459 research outputs found

    The Role of Fibrocytes in Sickle Cell Lung Disease

    Get PDF
    <div><h3>Background</h3><p>Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of sickle cell lung disease.</p> <h3>Methodology/Principal Findings</h3><p>Fibrocytes were quantified and characterized in subjects with sickle cell disease or healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4 ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung collagen content and improved lung compliance and histology.</p> <h3>Conclusions</h3><p>These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell lung disease.</p> </div

    Angiogenesis in Interstitial Lung Diseases: a pathogenetic hallmark or a bystander?

    Get PDF
    The past ten years parallels have been drawn between the biology of cancer and pulmonary fibrosis. The unremitting recruitment and maintenance of the altered fibroblast phenotype with generation and proliferation of immortal myofibroblasts is reminiscent with the transformation of cancer cells. A hallmark of tumorigenesis is the production of new blood vessels to facilitate tumor growth and mediate organ-specific metastases. On the other hand several chronic fibroproliferative disorders including fibrotic lung diseases are associated with aberrant angiogenesis. Angiogenesis, the process of new blood vessel formation is under strict regulation determined by a dual, yet opposing balance of angiogenic and angiostatic factors that promote or inhibit neovascularization, respectively. While numerous studies have examined so far the interplay between aberrant vascular and matrix remodeling the relative role of angiogenesis in the initiation and/or progression of the fibrotic cascade still remains elusive and controversial. The current article reviews data concerning the pathogenetic role of angiogenesis in the most prevalent and studied members of ILD disease-group such as IIPs and sarcoidosis, presents some of the future perspectives and formulates questions for potential further research

    In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1) such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM) cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed.</p> <p>Methods</p> <p>Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods.</p> <p>Results</p> <p>The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05). All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p < 0.05). All 5 cell lines pre-incubated with TN14003 prevented cellular migration towards chemokine CXCL12 (p < 0.01). TN14003 preferentially binds CXCR4 to native ligand CXCL12.</p> <p>Conclusion</p> <p>Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.</p

    Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis

    Get PDF
    BACKGROUND: The Duffy antigen receptor for chemokines (DARC) is known to be a promiscuous chemokine receptor that binds a variety of CXC and CC chemokines in the absence of any detectable signal transduction events. Within the CXC group of chemokines, DARC binds the angiogenic CXC chemokines including IL-8 (CXCL8), GROΞ± (CXCL1) and ENA-78 (CXCL5), all of which have previously been shown to be important in non-small cell lung carcinoma (NSCLC) tumor growth. We hypothesized that overexpression of DARC by a NSCLC tumor cell line would result in the binding of the angiogenic ELR+ CXC chemokines by the tumor cells themselves, and thus interfere with the stimulation of endothelial cells and induction of angiogenesis by the tumor cell-derived angiogenic chemokines. RESULTS: NSCLC tumor cells that constitutively expressed DARC were generated and their growth characteristics were compared to control transfected cells in vitro and in vivo in SCID animals. We found that tumors derived from DARC-expressing cells were significantly larger in size than tumors derived from control-transfected cells. However, upon histological examination we found that DARC-expressing tumors had significantly more necrosis and decreased tumor cellularity, as compared to control tumors. Expression of DARC by NSCLC cells was also associated with a decrease in tumor-associated vasculature and a reduction in metastatic potential. CONCLUSIONS: The expression of DARC in the context of NSCLC tumors may act as a chemokine decoy receptor and interferes with normal tumor growth and chemokine-induced tumor neovascularization

    Origin of myofibroblasts in liver fibrosis

    Get PDF
    Most chronic liver diseases of all etiologies result in progressive liver fibrosis. Myofibroblasts produce the extracellular matrix, including type I collagen, which constitutes the fibrous scar in liver fibrosis. Normal liver has little type I collagen and no detectable myofibroblasts, but myofibroblasts appear early in experimental and clinical liver injury. The origin of the myofibroblast in liver fibrosis is still unresolved. The possibilities include activation of endogenous mesenchymal cells including fibroblasts and hepatic stellate cells, recruitment from the bone marrow, and transformation of epithelial or endothelial cells to myofibroblasts. In fact, the origin of myofibroblasts may be different for different types of chronic liver diseases, such as cholestatic liver disease or hepatotoxic liver disease. This review will examine our current understanding of the liver myofibroblast

    Interferon-Inducible CXC Chemokines Directly Contribute to Host Defense against Inhalational Anthrax in a Murine Model of Infection

    Get PDF
    Chemokines have been found to exert direct, defensin-like antimicrobial activity in vitro, suggesting that, in addition to orchestrating cellular accumulation and activation, chemokines may contribute directly to the innate host response against infection. No observations have been made, however, demonstrating direct chemokine-mediated promotion of host defense in vivo. Here, we show that the murine interferon-inducible CXC chemokines CXCL9, CXCL10, and CXCL11 each exert direct antimicrobial effects in vitro against Bacillus anthracis Sterne strain spores and bacilli including disruptions in spore germination and marked reductions in spore and bacilli viability as assessed using CFU determination and a fluorometric assay of metabolic activity. Similar chemokine-mediated antimicrobial activity was also observed against fully virulent Ames strain spores and encapsulated bacilli. Moreover, antibody-mediated neutralization of these CXC chemokines in vivo was found to significantly increase host susceptibility to pulmonary B. anthracis infection in a murine model of inhalational anthrax with disease progression characterized by systemic bacterial dissemination, toxemia, and host death. Neutralization of the shared chemokine receptor CXCR3, responsible for mediating cellular recruitment in response to CXCL9, CXCL10, and CXCL11, was not found to increase host susceptibility to inhalational anthrax. Taken together, our data demonstrate a novel, receptor-independent antimicrobial role for the interferon-inducible CXC chemokines in pulmonary innate immunity in vivo. These data also support an immunomodulatory approach for effectively treating and/or preventing pulmonary B. anthracis infection, as well as infections caused by pathogenic and potentially, multi-drug resistant bacteria including other spore-forming organisms

    The predictive role of serum and bronchoalveolar lavage cytokines and adhesion molecules for acute respiratory distress syndrome development and outcome

    Get PDF
    BACKGROUND: The predictive role of many cytokines and adhesion molecules has not been studied systematically in acute respiratory distress syndrome (ARDS). METHODS: We measured prospectively tumour necrosis factor alpha (TNF-Ξ±), interleukin (IL)-1, soluble vascular adhesion molecule-1 (VCAM-1) and soluble intercellular adhesion molecule-1 (ICAM-1) in serum and bronchoalveolar lavage fluid (BALF) within 2 hours following admission, in 65 patients. The patients were divided into: those fulfilling the criteria for ARDS (n = 23, group A), those who were pre-ARDS and who developed ARDS within 24 hours (n = 14, group B), and those on pre-ARDS but who never developed ARDS (n = 28, group C). RESULTS: All the measured molecules were only found at higher levels in the serum of patients that died either with or without ARDS (P < 0.05 – P < 0.0001). Patients at risk exhibited a good negative predictive value (NPV) of the measured molecules for ARDS development both in their serum (89 to 95%) and BALF (86 to 92%) levels. In contrast to BALF, serum levels of IL-1 and adhesion molecules exhibited a good NPV (68 to 96%), sensitivity (60 to 88%) and survival specificity (74 to 96%) in all groups. All molecules in serum and BALF IL-1 were correlated with the APACHE II (P < 0.05 – P < 0.0001). Serum and BALF IL-1 as well as BALF TNF-Ξ± were negatively correlated to PaO(2)/FiO(2) (all P < 0.05). CONCLUSIONS: The studied molecules have good NPV for ARDS development both in serum and BALF. Serum rather than BALF levels seem to be related to outcome
    • …
    corecore