72 research outputs found

    A unified framework for finding differentially expressed genes from microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This paper presents a unified framework for finding differentially expressed genes (DEGs) from the microarray data. The proposed framework has three interrelated modules: (i) gene ranking, ii) significance analysis of genes and (iii) validation. The first module uses two gene selection algorithms, namely, a) two-way clustering and b) combined adaptive ranking to rank the genes. The second module converts the gene ranks into p-values using an R-test and fuses the two sets of p-values using the Fisher's omnibus criterion. The DEGs are selected using the FDR analysis. The third module performs three fold validations of the obtained DEGs. The robustness of the proposed unified framework in gene selection is first illustrated using false discovery rate analysis. In addition, the clustering-based validation of the DEGs is performed by employing an adaptive subspace-based clustering algorithm on the training and the test datasets. Finally, a projection-based visualization is performed to validate the DEGs obtained using the unified framework.</p> <p>Results</p> <p>The performance of the unified framework is compared with well-known ranking algorithms such as t-statistics, Significance Analysis of Microarrays (SAM), Adaptive Ranking, Combined Adaptive Ranking and Two-way Clustering. The performance curves obtained using 50 simulated microarray datasets each following two different distributions indicate the superiority of the unified framework over the other reported algorithms. Further analyses on 3 real cancer datasets and 3 Parkinson's datasets show the similar improvement in performance. First, a 3 fold validation process is provided for the two-sample cancer datasets. In addition, the analysis on 3 sets of Parkinson's data is performed to demonstrate the scalability of the proposed method to multi-sample microarray datasets.</p> <p>Conclusion</p> <p>This paper presents a unified framework for the robust selection of genes from the two-sample as well as multi-sample microarray experiments. Two different ranking methods used in module 1 bring diversity in the selection of genes. The conversion of ranks to p-values, the fusion of p-values and FDR analysis aid in the identification of significant genes which cannot be judged based on gene ranking alone. The 3 fold validation, namely, robustness in selection of genes using FDR analysis, clustering, and visualization demonstrate the relevance of the DEGs. Empirical analyses on 50 artificial datasets and 6 real microarray datasets illustrate the efficacy of the proposed approach. The analyses on 3 cancer datasets demonstrate the utility of the proposed approach on microarray datasets with two classes of samples. The scalability of the proposed unified approach to multi-sample (more than two sample classes) microarray datasets is addressed using three sets of Parkinson's Data. Empirical analyses show that the unified framework outperformed other gene selection methods in selecting differentially expressed genes from microarray data.</p

    Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    Get PDF
    <div><p>Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway <i>i</i>.<i>e</i>., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times <i>vs</i>. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation.</p></div

    International Veterinary Epilepsy Task Force consensus proposal: Medical treatment of canine epilepsy in Europe

    Get PDF
    In Europe, the number of antiepileptic drugs (AEDs) licensed for dogs has grown considerably over the last years. Nevertheless, the same questions remain, which include, 1) when to start treatment, 2) which drug is best used initially, 3) which adjunctive AED can be advised if treatment with the initial drug is unsatisfactory, and 4) when treatment changes should be considered. In this consensus proposal, an overview is given on the aim of AED treatment, when to start long-term treatment in canine epilepsy and which veterinary AEDs are currently in use for dogs. The consensus proposal for drug treatment protocols, 1) is based on current published evidence-based literature, 2) considers the current legal framework of the cascade regulation for the prescription of veterinary drugs in Europe, and 3) reflects the authors’ experience. With this paper it is aimed to provide a consensus for the management of canine idiopathic epilepsy. Furthermore, for the management of structural epilepsy AEDs are inevitable in addition to treating the underlying cause, if possible

    Immune response of macrophages from young and aged mice to the oral pathogenic bacterium Porphyromonas gingivalis

    Get PDF
    Periodontal disease is a chronic inflammatory gum disease that in severe cases leads to tooth loss. Porphyromonas gingivalis (Pg) is a bacterium closely associated with generalized forms of periodontal disease. Clinical onset of generalized periodontal disease commonly presents in individuals over the age of 40. Little is known regarding the effect of aging on inflammation associated with periodontal disease. In the present study we examined the immune response of bone marrow derived macrophages (BMM) from young (2-months) and aged (1-year and 2-years) mice to Pg strain 381. Pg induced robust expression of cytokines; tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10, chemokines; neutrophil chemoattractant protein (KC), macrophage colony stimulating factor (MCP)-1, macrophage inflammatory protein (MIP)-1α and regulated upon activation normal T cell expressed and secreted (RANTES), as well as nitric oxide (NO, measured as nitrite), and prostaglandin E2 (PGE2) from BMM of young mice. BMM from the 2-year age group produced significantly less TNF-α, IL-6 and NO in response to Pg as compared with BMM from 2-months and 1-year of age. We did not observe any difference in the levels of IL-1β, IL-10 and PGE2 produced by BMM in response to Pg. BMM from 2-months and 1-year of age produced similar levels of all chemokines measured with the exception of MCP-1, which was reduced in BMM from 1-year of age. BMM from the 2-year group produced significantly less MCP-1 and MIP-1α compared with 2-months and 1-year age groups. No difference in RANTES production was observed between age groups. Employing a Pg attenuated mutant, deficient in major fimbriae (Pg DPG3), we observed reduced ability of the mutant to stimulate inflammatory mediator expression from BMMs as compared to Pg 381, irrespective of age. Taken together these results support senescence as an important facet of the reduced immunological response observed by BMM of aged host to the periodontal pathogen Pg

    Social network and dominance hierarchy analyses at Chimpanzee Sanctuary Northwest

    Get PDF
    Different aspects of sociality bear considerable weight on the individual- and group-level welfare of captive nonhuman primates. Social Network Analysis (SNA) is a useful tool for gaining a holistic understanding of the dynamic social relationships of captive primate groups. Gaining a greater understanding of captive chimpanzees through investigations of centrality, preferred and avoided relationships, dominance hierarchy, and social network diagrams can be useful in advising current management practices in sanctuaries and other captive settings. In this study, we investigated the dyadic social relationships, group-level social networks, and dominance hierarchy of seven chimpanzees (Pan troglodytes) at Chimpanzee Sanctuary Northwest. We used focal-animal and instantaneous scan sampling to collect 106.75 total hours of associative, affiliative, and agonistic data from June to September 2016. We analyzed our data using SOCPROG to derive dominance hierarchies and network statistics, and we diagrammed the group\u27s social networks in NetDraw. Three individuals were most central in the grooming network, while two others had little connection. Through agonistic networks, we found that group members reciprocally exhibited agonism, and the group\u27s dominance hierarchy was statistically non-linear. One chimpanzee emerged as the most dominant through agonism but was least connected to other group members across affiliative networks. Our results indicate that the conventional methods used to calculate individuals\u27 dominance rank may be inadequate to wholly depict a group\u27s social relationships in captive sanctuary populations. Our results have an applied component that can aid sanctuary staff in a variety of ways to best ensure the improvement of group welfare
    corecore