14 research outputs found

    Management and modeling approaches for controlling raccoon rabies: The road to elimination

    No full text

    Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review

    No full text
    International audienceAbstractRABORAL V-RG® is an oral rabies vaccine bait that contains an attenuated (“modified-live”) recombinant vaccinia virus vector vaccine expressing the rabies virus glycoprotein gene (V-RG). Approximately 250 million doses have been distributed globally since 1987 without any reports of adverse reactions in wildlife or domestic animals since the first licensed recombinant oral rabies vaccine (ORV) was released into the environment to immunize wildlife populations against rabies. V-RG is genetically stable, is not detected in the oral cavity beyond 48 h after ingestion, is not shed by vaccinates into the environment, and has been tested for thermostability under a range of laboratory and field conditions. Safety of V-RG has been evaluated in over 50 vertebrate species, including non-human primates, with no adverse effects observed regardless of route or dose. Immunogenicity and efficacy have been demonstrated under laboratory and field conditions in multiple target species (including fox, raccoon, coyote, skunk, raccoon dog, and jackal). The liquid vaccine is packaged inside edible baits (i.e., RABORAL V-RG, the vaccine-bait product) which are distributed into wildlife habitats for consumption by target species. Field application of RABORAL V-RG has contributed to the elimination of wildlife rabies from three European countries (Belgium, France and Luxembourg) and of the dog/coyote rabies virus variant from the United States of America (USA). An oral rabies vaccination program in west-central Texas has essentially eliminated the gray fox rabies virus variant from Texas with the last case reported in a cow during 2009. A long-term ORV barrier program in the USA using RABORAL V-RG is preventing substantial geographic expansion of the raccoon rabies virus variant. RABORAL V-RG has also been used to control wildlife rabies in Israel for more than a decade. This paper: (1) reviews the development and historical use of RABORAL V-RG; (2) highlights wildlife rabies control programs using the vaccine in multiple species and countries; and (3) discusses current and future challenges faced by programs seeking to control or eliminate wildlife rabies

    Oral vaccination of wildlife using a vaccinia–rabies-glycoprotein recombinant virus vaccine (RABORAL V-RG®): a global review

    No full text

    Genetic population structure of invasive raccoons (Procyon lotor) in Hokkaido, Japan: Unique phenomenon caused by pet escape or abandonment

    No full text
    Phylogeographic studies can resolve relationships between genetic population structure of organisms and geographical distributions. Raccoons have become feral in Japan, and in Hokkaido island, they have been rapidly increasing in number and spreading since the 1970s. We analyzed mitochondrial (mtDNA) and microsatellite DNA to understand the current phylogenetic distribution and invasive founder events. Overall, Hokkaido raccoons maintained high genetic diversity (i.e., the level of heterozygosity was comparable to the original habitat, North America). Based on mtDNA distribution and microsatellite diversity, Hokkaido raccoons were divided into six management units. However, mtDNA haplotype distributions and genetic structures based on microsatellites did not always correspond to each other (e.g., two geographically and genetically separated populations showed similar mtDNA distributions). In addition, a high degree of genetic admixture was observed in every unit, and the degree of genetic differentiation was low even between regions separated by long distances. Compared with other countries in Europe where genetic distribution of introduced raccoons is more clearly structured, the current results represent a unique and complex phenomenon of pet escape/abandonment in Hokkaido: i.e., genetically related colonies were introduced into multiple regions as founder events, resulting in the current state in which raccoons are not clearly genetically differentiated even 40 years after introduction

    Bat Rabies in Guatemala

    Get PDF
    Rabies in bats is considered enzootic throughout the New World, but few comparative data are available for most countries in the region. As part of a larger pathogen detection program, enhanced bat rabies surveillance was conducted in Guatemala, between 2009 and 2011. A total of 672 bats of 31 species were sampled and tested for rabies. The prevalence of rabies virus (RABV) detection among all collected bats was low (0.3%). Viral antigens were detected and infectious virus was isolated from the brains of two common vampire bats (Desmodus rotundus). RABV was also isolated from oral swabs, lungs and kidneys of both bats, whereas viral RNA was detected in all of the tissues examined by hemi-nested RT-PCR except for the liver of one bat. Sequencing of the nucleoprotein gene showed that both viruses were 100% identical, whereas sequencing of the glycoprotein gene revealed one non-synonymous substitution (302T,S). The two vampire bat RABV isolates in this study were phylogenetically related to viruses associated with vampire bats in the eastern states of Mexico and El Salvador. Additionally, 7% of sera collected from 398 bats demonstrated RABV neutralizing antibody. The proportion of seropositive bats varied significantly across trophic guilds, suggestive of complex intraspecific compartmentalization of RABV perpetuation
    corecore