185 research outputs found
Electro-optically tunable microring resonators in lithium niobate
Optical microresonators have recently attracted a growing attention in the
photonics community. Their applications range from quantum electro-dynamics to
sensors and filtering devices for optical telecommunication systems, where they
are likely to become an essential building block. The integration of nonlinear
and electro-optical properties in the resonators represents a very stimulating
challenge, as it would incorporate new and more advanced functionality. Lithium
niobate is an excellent candidate material, being an established choice for
electro-optic and nonlinear optical applications. Here we report on the first
realization of optical microring resonators in submicrometric thin films of
lithium niobate. The high index contrast films are produced by an improved
crystal ion slicing and bonding technique using benzocyclobutene. The rings
have radius R=100 um and their transmission spectrum has been tuned using the
electro-optic effect. These results open new perspectives for the use of
lithium niobate in chip-scale integrated optical devices and nonlinear optical
microcavities.Comment: 15 pages, 8 figure
Factors underlying inadequate parents' awareness regarding pediatrics immunization: findings of cross-sectional study in Mosul-Iraq
Background
Since last 100 years, immunization rate is one of the best public health outcome and service indicators. However, the immunization system is still imperfect; there are many countries that still have unvaccinated children. Parental decisions regarding immunization are very important to improve immunization rate. The aim of this study is to evaluate the association between parental knowledge-practice (KP) regarding immunization with family and immunization providers’ factors.
Methods
This is a prospective cross-sectional study design. Immunization knowledge and practices among 528 Iraqi parents were evaluated through validated questionnaire. Familial data and immunization provider’s characteristics were collected from parents through interview.
Results
More than half of respondents/study population (66.1%) have adequate knowledge- practice scores. Significant associations were noted for knowledge-practice groups with father’s education level, mother’s education level, mother’s age at delivery, number of preschool children, parents gender, family income, provider types, and birth place (p < 0.05).
Conclusion
Immunization campaigns and awareness are required to improve parents’ knowledge and practice regarding immunization. The study results reinforce recommendations for use of educational programmes to improve the immunization knowledge and practice.
Keywords: Immunization; Iraq; Parents; Knowledge; Practic
Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model
The transgenomic metabolic effects of exposure to either Lactobacillus paracasei or Lactobacillus rhamnosus probiotics have been measured and mapped in humanized extended genome mice (germ-free mice colonized with human baby flora). Statistical analysis of the compartmental fluctuations in diverse metabolic compartments, including biofluids, tissue and cecal short-chain fatty acids (SCFAs) in relation to microbial population modulation generated a novel top-down systems biology view of the host response to probiotic intervention. Probiotic exposure exerted microbiome modification and resulted in altered hepatic lipid metabolism coupled with lowered plasma lipoprotein levels and apparent stimulated glycolysis. Probiotic treatments also altered a diverse range of pathways outcomes, including amino-acid metabolism, methylamines and SCFAs. The novel application of hierarchical-principal component analysis allowed visualization of multicompartmental transgenomic metabolic interactions that could also be resolved at the compartment and pathway level. These integrated system investigations demonstrate the potential of metabolic profiling as a top-down systems biology driver for investigating the mechanistic basis of probiotic action and the therapeutic surveillance of the gut microbial activity related to dietary supplementation of probiotics
Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms
Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition
Critical Role of VCP/p97 in the Pathogenesis and Progression of Non-Small Cell Lung Carcinoma
Valosin-containing protein (VCP)/p97 is an AAA ATPase molecular chaperone that regulates vital cellular functions and protein-processing. A recent study indicated that VCP expression levels are correlated with prognosis and progression of non-small cell lung carcinoma (NSCLC). We not only verified these findings but also identified the specific role of VCP in NSCLC pathogenesis and progression.Our results show that VCP is significantly overexpressed in non-small cell lung carcinoma (NSCLC) as compared to normal tissues and cell lines (p<0.001). Moreover, we observed the corresponding accumulation of ubiquitinated-proteins in NSCLC cell lines and tissues as compared to the normal controls. VCP inhibition by si/shRNA or small-molecule (Eeyarestatin I, EerI) significantly (p<0.05, p<0.00007) suppressed H1299 proliferation and migration but induced (p<0.00001) apoptosis. Cell cycle analysis by flow cytometry verified this data and shows that VCP inhibition significantly (p<0.001, p<0.003) induced cell cycle arrest in the G0/G1 phases. We also found that VCP directly regulates p53 and NFκB protein levels as a potential mechanism to control tumor cell proliferation and progression. Finally, we evaluated the therapeutic potential of VCP inhibition and observed significantly reduced NSCLC tumor growth in both in vitro and xenograft murine (athymic-nude) models after EerI treatment (p<0.05).Thus, targeting VCP in NSCLC may provide a novel strategy to restore p53 and NFκB levels and ameliorate the growth and tumorigenicity, leading to improved clinical outcomes
The host ubiquitin-dependent segregase VCP/p97 is required for the onset of human cytomegalovirus replication
The human cytomegalovirus major immediate early proteins IE1 and IE2 are critical drivers of virus replication and are considered pivotal in determining the balance between productive and latent infection. IE1 and IE2 are derived from the same primary transcript by alternative splicing and regulation of their expression likely involves a complex interplay between cellular and viral factors. Here we show that knockdown of the host ubiquitin-dependent segregase VCP/p97, results in loss of IE2 expression, subsequent suppression of early and late gene expression and, ultimately, failure in virus replication. RNAseq analysis showed increased levels of IE1 splicing, with a corresponding decrease in IE2 splicing following VCP knockdown. Global analysis of viral transcription showed the expression of a subset of viral genes is not reduced despite the loss of IE2 expression, including UL112/113. Furthermore, Immunofluorescence studies demonstrated that VCP strongly colocalised with the viral replication compartments in the nucleus. Finally, we show that NMS-873, a small molecule inhibitor of VCP, is a potent HCMV antiviral with potential as a novel host targeting therapeutic for HCMV infection
Spatiotemporal Correlations between Blood-Brain Barrier Permeability and Apparent Diffusion Coefficient in a Rat Model of Ischemic Stroke
Variations in apparent diffusion coefficient of water (ADC) and blood-brain barrier (BBB) permeability after ischemia have been suggested, though the correlation between ADC alterations and BBB opening remains to be studied. We hypothesized that there are correlations between the alteration of ADC and BBB permeability. Rats were subjected to 2 h of transient middle cerebral artery occlusion and studied at 3 and 48 h of reperfusion, which are crucial times of BBB opening. BBB permeability and ADC values were measured by dynamic contrast-enhanced MRI and diffusion-weighted imaging, respectively. Temporal and spatial analyses of the evolution of BBB permeability and ADC alteration in cortical and subcortical regions were conducted along with the correlation between ADC and BBB permeability data. We found significant increases in BBB leakage and reduction in ADC values between 3 and 48 h of reperfusion. We identified three MR tissue signature models: high Ki and low ADC, high Ki and normal ADC, and normal Ki and low ADC. Over time, areas with normal Ki and low ADC transformed into areas with high Ki. We observed a pattern of lesion evolution where the extent of initial ischemic injury reflected by ADC abnormalities determines vascular integrity. Our results suggest that regions with vasogenic edema alone are not likely to develop low ADC by 48 h and may undergo recovery
Perspectives of the Apiaceae Hepatoprotective Effects - A Review
The liver has the crucial role in the regulation of various physiological processes and in the excretion of endogenous waste metabolites and xenobiotics. Liver structure impairment can be caused by various factors including microorganisms, autoimmune diseases, chemicals, alcohol and drugs. The plant kingdom is full of liver protective chemicals such as phenols, coumarins, lignans, essential oils, monoterpenes, carotenoids, glycosides, flavonoids, organic acids, lipids, alkaloids and xanthenes. Apiaceae plants are usually used as a vegetable or as a spice, but their other functional properties are also very important. This review highlights the significance of caraway, dill, cumin, aniseed, fennel, coriander, celery, lovage, angelica, parsley and carrot, which are popular vegetables and spices, but possess hepatoprotective potential. These plants can be used for medicinal applications to patients who suffer from liver damage
Activation of Cell Cycle Arrest and Apoptosis by the Proto-Oncogene Pim-2
Potent survival effects have been ascribed to the serine/threonine kinase proto-oncogene PIM-2. Elevated levels of PIM-2 are associated with various malignancies. In human cells, a single Pim-2 transcript gives rise mainly to two protein isoforms (34, 41 kDa) that share an identical catalytic site but differ at their N-terminus, due to in-frame alternative translation initiation sites. In this study we observed that the 34 kDa PIM-2 isoform has differential nuclear and cytoplasmic forms in all tested cell lines, suggesting a possible role for the balance between these forms for PIM-2's function. To further study the cellular role of the 34 kDa isoform of PIM-2, an N-terminally HA-tagged form of this isoform was transiently expressed in HeLa cells. Surprisingly, this resulted in increased level of G1 arrested cells, as well as of apoptotic cells. These effects could not be obtained by a Flag-tagged form of the 41 kDa isoform. The G1 arrest and apoptotic effects were associated with an increase in T14/Y15 phosphorylation of CDK2 and proteasom-dependent down-regulation of CDC25A, as well as with up-regulation of p57, E2F-1, and p73. No such effects were obtained upon over-expression of a kinase-dead form of the HA-tagged 34 kDa PIM-2. By either using a dominant negative form of p73, or by over-expressing the 34 kDa PIM-2 in p73-silenced cells, we demonstrated that these effects were p73-dependent. These results demonstrate that while PIM-2 can function as a potent survival factor, it can, under certain circumstances, exhibit pro-apoptotic effects as well
- …