47 research outputs found

    Root trenching: a useful tool to estimate autotrophic soil respiration? A case study in an Austrian mountain forest

    Full text link
    We conducted a trenching experiment in a mountain forest in order to assess the contribution of theautotrophic respiration to total soil respiration and evaluate trenching as a technique to achieve it. We hypothesised that the trenching experiment would alter both microbial biomass and microbial community structure and that Wne roots (less than 2 mm diameter) would be decomposed within one growing season. Soil CO2 eZux was measured roughlybiweekly over two growing seasons. Root presence and morphology parameters, as well as the soil microbial community were measured prior to trenching, 5 and 15 months after trenching. The trenched plots emitted about 20 and 30% less CO2 than the control plots in the Wrst and secondgrowing season, respectively. Roots died in trenched plots, but root decay was slow. After 5 and 15 months, Wne root biomass was decreased by 9% (not statistically diferent)and 30%, (statistically diVerent) respectively. When wecorrected for the additional trenched-plot CO2 eZux due to Wne root decomposition, the autotrophic soil respiration rose to »26% of the total soil respiration for the Wrst growing season, and to »44% for the second growing season.Soil microbial biomass and community structure was not altered by the end of the second growing season. We conclude that trenching can give accurate estimates of the autotrophic and heterotrophic components of soil respiration, ifmethodological side eVects are accounted for, only

    Seropositivity and Risk Factors Associated with Toxoplasma gondii Infection in Wild Birds from Spain

    Get PDF
    Toxoplasma gondii is a zoonotic intracellular protozoan parasite of worldwide distribution that infects many species of warm-blooded animals, including birds. To date, there is scant information about the seropositivity of T. gondii and the risk factors associated with T. gondii infection in wild bird populations. In the present study, T. gondii infection was evaluated on sera obtained from 1079 wild birds belonging to 56 species (including Falconiformes (n = 610), Strigiformes (n = 260), Ciconiiformes (n = 156), Gruiformes (n = 21), and other orders (n = 32), from different areas of Spain. Antibodies to T. gondii (modified agglutination test, MAT titer ≥1∶25) were found in 282 (26.1%, IC95%:23.5–28.7) of the 1079 birds. This study constitute the first extensive survey in wild birds species in Spain and reports for the first time T. gondii antibodies in the griffon vulture (Gyps fulvus), short-toed snake-eagle (Circaetus gallicus), Bonelli's eagle (Aquila fasciata), golden eagle (Aquila chrysaetos), bearded vulture (Gypaetus barbatus), osprey (Pandion haliaetus), Montagu's harrier (Circus pygargus), Western marsh-harrier (Circus aeruginosus), peregrine falcon (Falco peregrinus), long-eared owl (Asio otus), common scops owl (Otus scops), Eurasian spoonbill (Platalea leucorodia), white stork (Ciconia ciconia), grey heron (Ardea cinerea), common moorhen (Gallinula chloropus); in the International Union for Conservation of Nature (IUCN) “vulnerable” Spanish imperial eagle (Aquila adalberti), lesser kestrel (Falco naumanni) and great bustard (Otis tarda); and in the IUCN “near threatened” red kite (Milvus milvus). The highest seropositivity by species was observed in the Eurasian eagle owl (Bubo bubo) (68.1%, 98 of 144). The main risk factors associated with T. gondii seropositivity in wild birds were age and diet, with the highest exposure in older animals and in carnivorous wild birds. The results showed that T. gondii infection is widespread and can be at a high level in many wild birds in Spain, most likely related to their feeding behaviour

    Global Prediction of Tissue-Specific Gene Expression and Context-Dependent Gene Networks in Caenorhabditis elegans

    Get PDF
    Tissue-specific gene expression plays a fundamental role in metazoan biology and is an important aspect of many complex diseases. Nevertheless, an organism-wide map of tissue-specific expression remains elusive due to difficulty in obtaining these data experimentally. Here, we leveraged existing whole-animal Caenorhabditis elegans microarray data representing diverse conditions and developmental stages to generate accurate predictions of tissue-specific gene expression and experimentally validated these predictions. These patterns of tissue-specific expression are more accurate than existing high-throughput experimental studies for nearly all tissues; they also complement existing experiments by addressing tissue-specific expression present at particular developmental stages and in small tissues. We used these predictions to address several experimentally challenging questions, including the identification of tissue-specific transcriptional motifs and the discovery of potential miRNA regulation specific to particular tissues. We also investigate the role of tissue context in gene function through tissue-specific functional interaction networks. To our knowledge, this is the first study producing high-accuracy predictions of tissue-specific expression and interactions for a metazoan organism based on whole-animal data

    Using C. elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders

    Get PDF
    Prova tipográfica (uncorrected proof)Neurodevelopmental disorders such as epilepsy, intellectual disability (ID), and autism spectrum disorders (ASDs) occur in over 2 % of the population, as the result of genetic mutations, environmental factors, or combination of both. In the last years, use of large-scale genomic techniques allowed important advances in the identification of genes/loci associated with these disorders. Nevertheless, following association of novel genes with a given disease, interpretation of findings is often difficult due to lack of information on gene function and effect of a given mutation in the corresponding protein. This brings the need to validate genetic associations from a functional perspective in model systems in a relatively fast but effective manner. In this context, the small nematode, Caenorhabditis elegans, presents a good compromise between the simplicity of cell models and the complexity of rodent nervous systems. In this article, we review the features that make C. elegans a good model for the study of neurodevelopmental diseases. We discuss its nervous system architecture and function as well as the molecular basis of behaviors that seem important in the context of different neurodevelopmental disorders. We review methodologies used to assess memory, learning, and social behavior as well as susceptibility to seizures in this organism. We will also discuss technological progresses applied in C. elegans neurobiology research, such as use of microfluidics and optogenetic tools. Finally, we will present some interesting examples of the functional analysis of genes associated with human neurodevelopmental disorders and how we can move from genes to therapies using this simple model organism.The authors would like to acknowledge Fundação para a Ciência e Tecnologia (FCT) (PTDC/SAU-GMG/112577/2009). AJR and CB are recipients of FCT fellowships: SFRH/BPD/33611/2009 and SFRH/BPD/74452/2010, respectively
    corecore