114 research outputs found

    Earliest Triassic microbialites in the South China Block and other areas; controls on their growth and distribution

    Get PDF
    Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work

    The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins

    Get PDF
    Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell

    High risk for occupational exposure to HIV and utilization of post-exposure prophylaxis in a teaching hospital in Pune, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The risk for occupational exposure to HIV has been well characterized in the developed world, but limited information is available about this transmission risk in resource-constrained settings facing the largest burden of HIV infection. In addition, the feasibility and utilization of post-exposure prophylaxis (PEP) programs in these settings are unclear. Therefore, we examined the rate and characteristics of occupational exposure to HIV and the utilization of PEP among health care workers (HCW) in a large, urban government teaching hospital in Pune, India.</p> <p>Methods</p> <p>Demographic and clinical data on occupational exposures and their management were prospectively collected from January 2003–December 2005. US Centers for Diseases Control guidelines were utilized to define risk exposures, for which PEP was recommended. Incidence rates of reported exposures and trends in PEP utilization were examined using logistic regression.</p> <p>Results</p> <p>Of 1955 HCW, 557 exposures were reported by 484 HCW with an incidence of 9.5 exposures per 100 person-years (PY). Housestaff, particularly interns, reported the greatest number of exposures with an annual incidence of 47.0 per 100 PY. Personal protective equipment (PPE) was used in only 55.1% of these exposures. The incidence of high-risk exposures was 6.8/100 PY (n = 339); 49.1% occurred during a procedure or disposing of equipment and 265 (80.0%) received a stat dose of PEP. After excluding cases in which the source tested HIV negative, 48.4% of high-risk cases began an extended PEP regimen, of whom only 49.5% completed it. There were no HIV or Hepatitis B seroconversions identified. Extended PEP was continued unnecessarily in 7 (35%) of 20 cases who were confirmed to be HIV-negative. Over time, there was a significant reduction in proportion of percutaneous exposures and high-risk exposures (p < 0.01) and an increase in PEP utilization for high risk exposures (44% in 2003 to 100% in 2005, p = 0.002).</p> <p>Conclusion</p> <p>Housestaff are a vulnerable population at high risk for bloodborne exposures in teaching hospital settings in India. With implementation of a hospital-wide PEP program, there was an encouraging decrease of high-risk exposures over time and appropriate use of PEP. However, overall use of PPE was low, suggesting further measures are needed to prevent occupational exposures in India.</p

    A Man-Made ATP-Binding Protein Evolved Independent of Nature Causes Abnormal Growth in Bacterial Cells

    Get PDF
    Recent advances in de novo protein evolution have made it possible to create synthetic proteins from unbiased libraries that fold into stable tertiary structures with predefined functions. However, it is not known whether such proteins will be functional when expressed inside living cells or how a host organism would respond to an encounter with a non-biological protein. Here, we examine the physiology and morphology of Escherichia coli cells engineered to express a synthetic ATP-binding protein evolved entirely from non-biological origins. We show that this man-made protein disrupts the normal energetic balance of the cell by altering the levels of intracellular ATP. This disruption cascades into a series of events that ultimately limit reproductive competency by inhibiting cell division. We now describe a detailed investigation into the synthetic biology of this man-made protein in a living bacterial organism, and the effect that this protein has on normal cell physiology

    Theoretical Analysis of the Stress Induced B-Z Transition in Superhelical DNA

    Get PDF
    We present a method to calculate the propensities of regions within a DNA molecule to transition from B-form to Z-form under negative superhelical stresses. We use statistical mechanics to analyze the competition that occurs among all susceptible Z-forming regions at thermodynamic equilibrium in a superhelically stressed DNA of specified sequence. This method, which we call SIBZ, is similar to the SIDD algorithm that was previously developed to analyze superhelical duplex destabilization. A state of the system is determined by assigning to each base pair either the B- or the Z-conformation, accounting for the dinucleotide repeat unit of Z-DNA. The free energy of a state is comprised of the nucleation energy, the sequence-dependent B-Z transition energy, and the energy associated with the residual superhelicity remaining after the change of twist due to transition. Using this information, SIBZ calculates the equilibrium B-Z transition probability of each base pair in the sequence. This can be done at any physiologically reasonable level of negative superhelicity. We use SIBZ to analyze a variety of representative genomic DNA sequences. We show that the dominant Z-DNA forming regions in a sequence can compete in highly complex ways as the superhelicity level changes. Despite having no tunable parameters, the predictions of SIBZ agree precisely with experimental results, both for the onset of transition in plasmids containing introduced Z-forming sequences and for the locations of Z-forming regions in genomic sequences. We calculate the transition profiles of 5 kb regions taken from each of 12,841 mouse genes and centered on the transcription start site (TSS). We find a substantial increase in the frequency of Z-forming regions immediately upstream from the TSS. The approach developed here has the potential to illuminate the occurrence of Z-form regions in vivo, and the possible roles this transition may play in biological processes

    Deciphering the Code for Retroviral Integration Target Site Selection

    Get PDF
    Upon cell invasion, retroviruses generate a DNA copy of their RNA genome and integrate retroviral cDNA within host chromosomal DNA. Integration occurs throughout the host cell genome, but target site selection is not random. Each subgroup of retrovirus is distinguished from the others by attraction to particular features on chromosomes. Despite extensive efforts to identify host factors that interact with retrovirion components or chromosome features predictive of integration, little is known about how integration sites are selected. We attempted to identify markers predictive of retroviral integration by exploiting Precision-Recall methods for extracting information from highly skewed datasets to derive robust and discriminating measures of association. ChIPSeq datasets for more than 60 factors were compared with 14 retroviral integration datasets. When compared with MLV, PERV or XMRV integration sites, strong association was observed with STAT1, acetylation of H3 and H4 at several positions, and methylation of H2AZ, H3K4, and K9. By combining peaks from ChIPSeq datasets, a supermarker was identified that localized within 2 kB of 75% of MLV proviruses and detected differences in integration preferences among different cell types. The supermarker predicted the likelihood of integration within specific chromosomal regions in a cell-type specific manner, yielding probabilities for integration into proto-oncogene LMO2 identical to experimentally determined values. The supermarker thus identifies chromosomal features highly favored for retroviral integration, provides clues to the mechanism by which retrovirus integration sites are selected, and offers a tool for predicting cell-type specific proto-oncogene activation by retroviruses

    Moderate Traumatic Brain Injury Causes Acute Dendritic and Synaptic Degeneration in the Hippocampal Dentate Gyrus

    Get PDF
    Hippocampal injury-associated learning and memory deficits are frequent hallmarks of brain trauma and are the most enduring and devastating consequences following traumatic brain injury (TBI). Several reports, including our recent paper, showed that TBI brought on by a moderate level of controlled cortical impact (CCI) induces immature newborn neuron death in the hippocampal dentate gyrus. In contrast, the majority of mature neurons are spared. Less research has been focused on these spared neurons, which may also be injured or compromised by TBI. Here we examined the dendrite morphologies, dendritic spines, and synaptic structures using a genetic approach in combination with immunohistochemistry and Golgi staining. We found that although most of the mature granular neurons were spared following TBI at a moderate level of impact, they exhibited dramatic dendritic beading and fragmentation, decreased number of dendritic branches, and a lower density of dendritic spines, particularly the mushroom-shaped mature spines. Further studies showed that the density of synapses in the molecular layer of the hippocampal dentate gyrus was significantly reduced. The electrophysiological activity of neurons was impaired as well. These results indicate that TBI not only induces cell death in immature granular neurons, it also causes significant dendritic and synaptic degeneration in pathohistology. TBI also impairs the function of the spared mature granular neurons in the hippocampal dentate gyrus. These observations point to a potential anatomic substrate to explain, in part, the development of posttraumatic memory deficits. They also indicate that dendritic damage in the hippocampal dentate gyrus may serve as a therapeutic target following TBI

    Genetic Control of a Central Pattern Generator: Rhythmic Oromotor Movement in Mice Is Controlled by a Major Locus near Atp1a2

    Get PDF
    Fluid licking in mice is a rhythmic behavior that is controlled by a central pattern generator (CPG) located in a complex of brainstem nuclei. C57BL/6J (B6) and DBA/2J (D2) strains differ significantly in water-restricted licking, with a highly heritable difference in rates (h2≥0.62) and a corresponding 20% difference in interlick interval (mean ± SEM = 116.3±1 vs 95.4±1.1 ms). We systematically quantified motor output in these strains, their F1 hybrids, and a set of 64 BXD progeny strains. The mean primary interlick interval (MPI) varied continuously among progeny strains. We detected a significant quantitative trait locus (QTL) for a CPG controlling lick rate on Chr 1 (Lick1), and a suggestive locus on Chr 10 (Lick10). Linkage was verified by testing of B6.D2-1D congenic stock in which a segment of Chr 1 of the D2 strain was introgressed onto the B6 parent. The Lick1 interval on distal Chr 1 contains several strong candidate genes. One of these is a sodium/potassium pump subunit (Atp1a2) with widespread expression in astrocytes, as well as in a restricted population of neurons. Both this subunit and the entire Na+/K+-ATPase molecule have been implicated in rhythmogenesis for respiration and locomotion. Sequence variants in or near Apt1a2 strongly modulate expression of the cognate mRNA in multiple brain regions. This gene region has recently been sequenced exhaustively and we have cataloged over 300 non-coding and synonymous mutations segregating among BXD strains, one or more of which is likely to contribute to differences in central pattern generator tempo

    Dynamic Chromatin Organization during Foregut Development Mediated by the Organ Selector Gene PHA-4/FoxA

    Get PDF
    Central regulators of cell fate, or selector genes, establish the identity of cells by direct regulation of large cohorts of genes. In Caenorhabditis elegans, foregut (or pharynx) identity relies on the FoxA transcription factor PHA-4, which activates different sets of target genes at various times and in diverse cellular environments. An outstanding question is how PHA-4 distinguishes between target genes for appropriate transcriptional control. We have used the Nuclear Spot Assay and GFP reporters to examine PHA-4 interactions with target promoters in living embryos and with single cell resolution. While PHA-4 was found throughout the digestive tract, binding and activation of pharyngeally expressed promoters was restricted to a subset of pharyngeal cells and excluded from the intestine. An RNAi screen of candidate nuclear factors identified emerin (emr-1) as a negative regulator of PHA-4 binding within the pharynx, but emr-1 did not modulate PHA-4 binding in the intestine. Upon promoter association, PHA-4 induced large-scale chromatin de-compaction, which, we hypothesize, may facilitate promoter access and productive transcription. Our results reveal two tiers of PHA-4 regulation. PHA-4 binding is prohibited in intestinal cells, preventing target gene expression in that organ. PHA-4 binding within the pharynx is limited by the nuclear lamina component EMR-1/emerin. The data suggest that association of PHA-4 with its targets is a regulated step that contributes to promoter selectivity during organ formation. We speculate that global re-organization of chromatin architecture upon PHA-4 binding promotes competence of pharyngeal gene transcription and, by extension, foregut development
    corecore