34 research outputs found

    Water vapour in the atmosphere of a transiting extrasolar planet

    Get PDF
    Water is predicted to be among, if not the most abundant molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (hot-Jupiters) Several attempts have been made to detect water on an exoplanet, but have failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot-Jupiter HD189733b taken during the transit, where the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may be due to either star variability or the presence of clouds/hazes. We explain the most recent thermal infrared observations of the planet during secondary transit behind the star, reporting a non-detection of water on HD189733b, as being a consequence of the nearly isothermal vertical profile of the planet.s atmosphere. Our results show that water is detectable on extrasolar planets using the primary transit technique and that the infrared should be a better wavelength region than the visible, for such searches

    Covalent Protein Modification with ISG15 via a Conserved Cysteine in the Hinge Region

    Get PDF
    The ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) is strongly induced by type I interferons and displays antiviral activity. As other ubiquitin-like proteins (Ubls), ISG15 is post-translationally conjugated to substrate proteins by an isopeptide bond between the C-terminal glycine of ISG15 and the side chains of lysine residues in the substrates (ISGylation). ISG15 consists of two ubiquitin-like domains that are separated by a hinge region. In many orthologs, this region contains a single highly reactive cysteine residue. Several hundred potential substrates for ISGylation have been identified but only a few of them have been rigorously verified. In order to investigate the modification of several ISG15 substrates, we have purified ISG15 conjugates from cell extracts by metal-chelate affinity purification and immunoprecipitations. We found that the levels of proteins modified by human ISG15 can be decreased by the addition of reducing agents. With the help of thiol blocking reagents, a mutational analysis and miRNA mediated knock-down of ISG15 expression, we revealed that this modification occurs in living cells via a disulphide bridge between the substrates and Cys78 in the hinge region of ISG15. While the ISG15 activating enzyme UBE1L is conjugated by ISG15 in the classical way, we show that the ubiquitin conjugating enzyme Ubc13 can either be classically conjugated by ISG15 or can form a disulphide bridge with ISG15 at the active site cysteine 87. The latter modification would interfere with its function as ubiquitin conjugating enzyme. However, we found no evidence for an ISG15 modification of the dynamin-like GTPases MxA and hGBP1. These findings indicate that the analysis of potential substrates for ISG15 conjugation must be performed with great care to distinguish between the two types of modification since many assays such as immunoprecipitation or metal-chelate affinity purification are performed with little or no reducing agent present

    Transcriptional control in the prereplicative phase of T4 development

    Get PDF
    Control of transcription is crucial for correct gene expression and orderly development. For many years, bacteriophage T4 has provided a simple model system to investigate mechanisms that regulate this process. Development of T4 requires the transcription of early, middle and late RNAs. Because T4 does not encode its own RNA polymerase, it must redirect the polymerase of its host, E. coli, to the correct class of genes at the correct time. T4 accomplishes this through the action of phage-encoded factors. Here I review recent studies investigating the transcription of T4 prereplicative genes, which are expressed as early and middle transcripts. Early RNAs are generated immediately after infection from T4 promoters that contain excellent recognition sequences for host polymerase. Consequently, the early promoters compete extremely well with host promoters for the available polymerase. T4 early promoter activity is further enhanced by the action of the T4 Alt protein, a component of the phage head that is injected into E. coli along with the phage DNA. Alt modifies Arg265 on one of the two α subunits of RNA polymerase. Although work with host promoters predicts that this modification should decrease promoter activity, transcription from some T4 early promoters increases when RNA polymerase is modified by Alt. Transcription of T4 middle genes begins about 1 minute after infection and proceeds by two pathways: 1) extension of early transcripts into downstream middle genes and 2) activation of T4 middle promoters through a process called sigma appropriation. In this activation, the T4 co-activator AsiA binds to Region 4 of σ70, the specificity subunit of RNA polymerase. This binding dramatically remodels this portion of σ70, which then allows the T4 activator MotA to also interact with σ70. In addition, AsiA restructuring of σ70 prevents Region 4 from forming its normal contacts with the -35 region of promoter DNA, which in turn allows MotA to interact with its DNA binding site, a MotA box, centered at the -30 region of middle promoter DNA. T4 sigma appropriation reveals how a specific domain within RNA polymerase can be remolded and then exploited to alter promoter specificity

    Investigating a cluster of vulvar cancer in young women: a cross-sectional study of genital human papillomavirus prevalence

    Get PDF
    The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2334/12/243 Extent: 8p.Background: Vulvar cancer is a relatively rare malignancy, which occurs most often in postmenopausal women. We have previously identified a geographic cluster of vulvar cancer in young Indigenous women living in remote communities in the Arnhem Land region of Australia. In this population, we investigated the prevalence of oncogenic human papillomavirus (HPV) infection in anogenital samples (vulvar/vaginal/perianal area and cervix) and compared the overall, type-specific and multiple infection prevalence between sites. Methods: A cross-sectional survey of 551 Indigenous women aged 18–60 years was undertaken in 9 Arnhem Land communities. Women were consented for HPV detection and genotyping collected by a combined vulvar/vaginal/perianal (VVP) sweep swab and a separate PreservCyt endocervical sample collected during Pap cytology screening. HPV DNA testing was undertaken using PCR with broad spectrum L1 consensus PGMY09/11 primers with genotyping of positive samples by Roche Linear Array. The primary outcomes were the prevalence of cervical and VVP high-risk (HR) HPV. Results: The prevalence of VVP HR-HPV was 39%, which was significantly higher than the cervical HR-HPV prevalence (26%, p<0.0001). HPV-16 was the most common genotype detected in both sites (VVP 11%, cervical 6%). HPV-16 infection peaked in women aged <20 years; however, there was a marked decline in cervical HPV-16 prevalence with age (p=0.007), whereas following an initial decline, the prevalence of VVP HPV-16 remained constant in subsequent age-groups (p=0.835). Conclusions: In this population experiencing a cluster of vulvar cancer, the prevalence of cervical oncogenic HPV infection was similar to that reported by studies of other Australian women; however there was a significantly higher prevalence of vulvar/vaginal/perianal infection to cervical. The large discrepancy in HPV prevalence between anogenital sites in this population may represent more persistent infection at the vulva. This needs further investigation, including the presence of possible environmental and/or genetic factors that may impair host immunity.Alice R Rumbold, Sarah E Tan, John R Condon, Debbie Taylor-Thomson, Maria Nickels, Sepehr N Tabrizi, Margaret LJ Davy, Margaret M O’Brien, Christine M Connors, Ibrahim Zardawi, Jim Stankovich and Suzanne M Garlan

    Seeding density is a crucial determinant for the in vivo vascularisation capacity of adipose tissue-derived microvascular fragments

    Full text link
    Adipose tissue-derived microvascular fragments (ad-MVF) represent effective vascularisation units for the seeding of dermal substitutes. However, particularly in case of extensive skin defects, the required amounts of donor fat tissue for the harvesting of ad-MVF may not always be available. Therefore, we herein determined the lowest ad-MVF density needed to induce a sufficient vascularisation and incorporation of seeded implants. Collagen-glycosaminoglycan matrices (Integra®; diameter: 4 mm) were seeded with 15,000 (HD), 10,000 (MD) and 5,000 (LD) ad-MVF and implanted into full-thickness skin defects within mouse dorsal skinfold chambers, to analyse their in vivo vascularisation and incorporation. Intravital fluorescence microscopy showed a comparable vascularisation of HD and MD ad-MVF-seeded Integra®, which was significantly higher when compared to LD ad-MVF-seeded Integra®. As assessed by photoacoustic imaging, this was associated with an increased oxygenation of the implants. Additional histological and immunohistochemical analyses revealed an enhanced cellular infiltration, collagen content, microvessel density and epithelialisation of HD and MD ad-MVF-seeded Integra®, indicating a better incorporation compared to LD ad-MVF-seeded implants. These findings demonstrate that 80,000 ad-MVF/cm² is the least required density to guarantee an effective vascularisation of the dermal substitute
    corecore