2,984 research outputs found

    Impact factors of conservatic accounting

    Get PDF
    This study aims to obtain empirical evidence regarding the influence of firm size, company risk, capital intensity, debt covenant, and litigation risk on accounting conservatism. The population in this study were manufacturing companies listed on the Indonesia Stock Exchange from 2014 to 2019. The sampling technique in this study used a purposive sampling method to obtain 25 companies as research samples. The data analysis technique used in this study uses multiple linear regression. The test results show that firm size and litigation risk have a positive and significant effect on accounting conservatism. While testing on corporate risk variables and debt covenants does not affect accounting conservatism

    Anisotropic Impurity-States, Quasiparticle Scattering and Nematic Transport in Underdoped Ca(Fe1-xCox)2As2

    Get PDF
    Iron-based high temperature superconductivity develops when the `parent' antiferromagnetic/orthorhombic phase is suppressed, typically by introduction of dopant atoms. But their impact on atomic-scale electronic structure, while in theory quite complex, is unknown experimentally. What is known is that a strong transport anisotropy with its resistivity maximum along the crystal b-axis, develops with increasing concentration of dopant atoms; this `nematicity' vanishes when the `parent' phase disappears near the maximum superconducting Tc. The interplay between the electronic structure surrounding each dopant atom, quasiparticle scattering therefrom, and the transport nematicity has therefore become a pivotal focus of research into these materials. Here, by directly visualizing the atomic-scale electronic structure, we show that substituting Co for Fe atoms in underdoped Ca(Fe1-xCox)2As2 generates a dense population of identical anisotropic impurity states. Each is ~8 Fe-Fe unit cells in length, and all are distributed randomly but aligned with the antiferromagnetic a-axis. By imaging their surrounding interference patterns, we further demonstrate that these impurity states scatter quasiparticles in a highly anisotropic manner, with the maximum scattering rate concentrated along the b-axis. These data provide direct support for the recent proposals that it is primarily anisotropic scattering by dopant-induced impurity states that generates the transport nematicity; they also yield simple explanations for the enhancement of the nematicity proportional to the dopant density and for the occurrence of the highest resistivity along the b-axis

    Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling

    Get PDF
    High-bit-rate nanocavity-based single photon sources in the 1,550-nm telecom band are challenges facing the development of fibre-based long-haul quantum communication networks. Here we report a very fast single photon source in the 1,550-nm telecom band, which is achieved by a large Purcell enhancement that results from the coupling of a single InAs quantum dot and an InP photonic crystal nanocavity. At a resonance, the spontaneous emission rate was enhanced by a factor of 5 resulting a record fast emission lifetime of 0.2 ns at 1,550 nm. We also demonstrate that this emission exhibits an enhanced anti-bunching dip. This is the first realization of nanocavity-enhanced single photon emitters in the 1,550-nm telecom band. This coupled quantum dot cavity system in the telecom band thus provides a bright high-bit-rate non-classical single photon source that offers appealing novel opportunities for the development of a long-haul quantum telecommunication system via optical fibres.Comment: 16 pages, 4 figure

    Ковчег Ноя: рух матерії у Сонячній системі та на ядерних рівнях Землі

    Get PDF
    У Стародавньому світі пророку Мойсею було відкрито таємницю створення світу. Як науковий геній свого часу, Мойсей зашифрував у алегоричну форму в родоводі Адама і Потопі прикладну науку про будову ядра Землі, Сонячної системи і рухи космічної водневої і сонячної вуглецевої матерій (енергій) крізь Землю.В Древнем мире пророку Моисею была открыта тайна создания мира. Как научный гений своего времени Моисей зашифровал в форму аллегории в родословной Адама и Потопе прикладную науку о строении ядра Земли, Солнечной системы и движениях космической водородной и солнечной углеродной материи (энергии) сквозь Землю.In the Ancient history the mystery of the Creation of the world was revealed to the Prophet Moses. As a scientific genius of that époque Moses codified in allegoric way in the genealogy of Adam and The Flood the applied science on the structure of the Earth core, of the Solar System and motion of cosmic hydrogenous and solar carbonic substance (energy) through the Earth

    The magnetic nature of disk accretion onto black holes

    Get PDF
    Although disk accretion onto compact objects - white dwarfs, neutron stars, and black holes - is central to much of high energy astrophysics, the mechanisms which enable this process have remained observationally elusive. Accretion disks must transfer angular momentum for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can in principle both transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655-40 must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modeling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.Comment: 15 pages, 2 color figures, accepted for publication in Nature. Supplemental materials may be obtained by clicking http://www.astro.lsa.umich.edu/~jonmm/nature1655.p

    Strain- and Adsorption-Dependent Electronic States and Transport or Localization in Graphene

    Full text link
    The chapter generalizes results on influence of uniaxial strain and adsorption on the electron states and charge transport or localization in graphene with different configurations of imperfections (point defects): resonant (neutral) adsorbed atoms either oxygen- or hydrogen-containing molecules or functional groups, vacancies or substitutional atoms, charged impurity atoms or molecules, and distortions. To observe electronic properties of graphene-admolecules system, we applied electron paramagnetic resonance technique in a broad temperature range for graphene oxides as a good basis for understanding the electrotransport properties of other active carbons. Applied technique allowed observation of possible metal-insulator transition and sorption pumping effect as well as discussion of results in relation to the granular metal model. The electronic and transport properties are calculated within the framework of the tight-binding model along with the Kubo-Greenwood quantum-mechanical formalism. Depending on electron density and type of the sites, the conductivity for correlated and ordered adsorbates is found to be enhanced in dozens of times as compared to the cases of their random distribution. In case of the uniaxially strained graphene, the presence of point defects counteracts against or contributes to the band-gap opening according to their configurations. The band-gap behaviour is found to be nonmonotonic with strain in case of a simultaneous action of defect ordering and zigzag deformation. The amount of localized charge carriers (spins) is found to be correlated with the content of adsorbed centres responsible for the formation of potential barriers and, in turn, for the localization effects. Physical and chemical states of graphene edges, especially at a uniaxial strain along one of them, play a crucial role in electrical transport phenomena in graphene-based materials.Comment: 16 pages, 10 figure

    Prdm1 Regulates Thymic Epithelial Function To Prevent Autoimmunity

    Get PDF
    Autoimmunity is largely prevented by medullary thymic epithelial cells (TECs) through their expression and presentation of tissue-specific Ags to developing thymocytes, resulting in deletion of self-reactive T cells and supporting regulatory T cell development. The transcription factor Prdm1 has been implicated in autoimmune diseases in humans through genome-wide association studies and in mice using cell type–specific deletion of Prdm1 in T and dendritic cells. In this article, we demonstrate that Prdm1 functions in TECs to prevent autoimmunity in mice. Prdm1 is expressed by a subset of mouse TECs, and conditional deletion of Prdm1 in either Keratin 14– or Foxn1-expressing cells in mice resulted in multisymptom autoimmune pathology. Notably, the development of Foxp3+ regulatory T cells occurs normally in the absence of Blimp1. Importantly, nude mice developed anti-nuclear Abs when transplanted with Prdm1 null TECs, but not wild-type TECs, indicating that Prdm1 functions in TECs to regulate autoantibody production. We show that Prdm1 acts independently of Aire, a crucial transcription factor implicated in medullary TEC function. Collectively, our data highlight a previously unrecognized role for Prdm1 in regulating thymic epithelial function

    Phase transitions in contagion processes mediated by recurrent mobility patterns

    Full text link
    Human mobility and activity patterns mediate contagion on many levels, including the spatial spread of infectious diseases, diffusion of rumors, and emergence of consensus. These patterns however are often dominated by specific locations and recurrent flows and poorly modeled by the random diffusive dynamics generally used to study them. Here we develop a theoretical framework to analyze contagion within a network of locations where individuals recall their geographic origins. We find a phase transition between a regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected. This transition cannot be uncovered by continuous deterministic models due to the stochastic features of the contagion process and defines an invasion threshold that depends on mobility parameters, providing guidance for controlling contagion spread by constraining mobility processes. We recover the threshold behavior by analyzing diffusion processes mediated by real human commuting data.Comment: 20 pages of Main Text including 4 figures, 7 pages of Supplementary Information; Nature Physics (2011
    corecore