445 research outputs found

    Frizzled-8 integrates Wnt-11 and transforming growth factor-β signaling in prostate cancer

    Get PDF
    Wnt-11 promotes cancer cell migration and invasion independently of β-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD8 is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-β signals to promote EMT. FZD8 mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD8 in cancer, correlating with Wnt-11. FZD8 co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD8 silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-β/Smad-dependent signaling. Mechanistically, FZD8 forms a TGF-β-regulated complex with TGF-β receptors that is mediated by the extracellular domains of FZD8 and TGFBR1. Targeting FZD8 may therefore inhibit aberrant activation of both Wnt and TGF-β signals in prostate cancer

    Frizzled-8 integrates Wnt-11 and transforming growth factor-beta signaling in prostate cancer

    Get PDF
    Wnt-11 promotes cancer cell migration and invasion independently of beta-catenin but the receptors involved remain unknown. Here, we provide evidence that FZD(8) is a major Wnt-11 receptor in prostate cancer that integrates Wnt-11 and TGF-beta signals to promote EMT. FZD(8) mRNA is upregulated in multiple prostate cancer datasets and in metastatic cancer cell lines in vitro and in vivo. Analysis of patient samples reveals increased levels of FZD(8) in cancer, correlating with Wnt-11. FZD(8) co-localizes and co-immunoprecipitates with Wnt-11 and potentiates Wnt-11 activation of ATF2-dependent transcription. FZD(8) silencing reduces prostate cancer cell migration, invasion, three-dimensional (3D) organotypic cell growth, expression of EMT-related genes, and TGF-beta/Smad-dependent signaling. Mechanistically, FZD(8) forms a TGF-beta-regulated complex with TGF-beta receptors that is mediated by the extracellular domains of FZD(8) and TGFBR1. Targeting FZD(8) may therefore inhibit aberrant activation of both Wnt and TGF-beta signals in prostate cancer

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Dendritic Cells Take up and Present Antigens from Viable and Apoptotic Polymorphonuclear Leukocytes

    Get PDF
    Dendritic cells (DC) are endowed with the ability to cross-present antigens from other cell types to cognate T cells. DC are poised to meet polymorphonuclear leukocytes (PMNs) as a result of being co-attracted by interleukin-8 (IL-8), for instance as produced by tumor cells or infected tissue. Human monocyte-derived and mouse bone marrow-derived DC can readily internalize viable or UV-irradiated PMNs. Such internalization was abrogated at 4°C and partly inhibited by anti-CD18 mAb. In mice, DC which had internalized PMNs containing electroporated ovalbumin (OVA) protein, were able to cross-present the antigen to CD8 (OT-1) and CD4 (OT-2) TCR-transgenic T cells. Moreover, in humans, tumor cell debris is internalized by PMNs and the tumor-cell material can be subsequently taken up from the immunomagnetically re-isolated PMNs by DC. Importantly, if human neutrophils had endocytosed bacteria, they were able to trigger the maturation program of the DC. Moreover, when mouse PMNs with E. coli in their interior are co-injected in the foot pad with DC, many DC loaded with fluorescent material from the PMNs reach draining lymph nodes. Using CT26 (H-2d) mouse tumor cells, it was observed that if tumor cells are intracellularly loaded with OVA protein and UV-irradiated, they become phagocytic prey of H-2d PMNs. If such PMNs, that cannot present antigens to OT-1 T cells, are immunomagnetically re-isolated and phagocytosed by H-2b DC, such DC productively cross-present OVA antigen determinants to OT-1 T cells. Cross-presentation to adoptively transferred OT-1 lymphocytes at draining lymph nodes also take place when OVA-loaded PMNs (H-2d) are coinjected in the footpad of mice with autologous DC (H-2b). In summary, our results indicate that antigens phagocytosed by short-lived PMNs can be in turn internalized and productively cross-presented by DC

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    NOX4-dependent ROS production by stromal mammary cells modulates epithelial MCF-7 cell migration

    Get PDF
    BACKGROUND: The influence of the stromal microenvironment on the progression of epithelial cancers has been demonstrated. Unravelling the mechanisms by which stromal cells affect epithelial behaviour will contribute in understanding cellular malignancy. It has been proposed that redox environment has a role in the acquisition of malignancy. In this work, we studied the influence of epithelial cells on the stromal redox status and the consequence of this phenomenon on MCF-7 cell motility. METHODS: We analysed in a co-culture system, the effect of RMF-EG mammary stromal cells on the migratory capacity of MCF-7 cell line. To test whether the NOX-dependent stromal redox environment influences the epithelial migratory behaviour, we knocked down the expression of NOX4 using siRNA strategy. The effect of TGF-b1 on NOX4 expression and activity was analysed by qPCR, and intracellular ROS production was measured by a fluorescent method. RESULTS: Migration of MCF-7 breast epithelial cells was stimulated when co-cultured with RMF-EG cells. This effect depends on stromal NOX4 expression that, in turn, is enhanced by epithelial soluble factors. Pre-treatment of stromal cells with TGF-b1 enhanced this migratory stimulus by elevating NOX4 expression and intracellular ROS production. TGF-b1 seems to be a major component of the epithelial soluble factors that stimulate NOX4 expression. CONCLUSIONS: Our results have identified that an increased stromal oxidative status, mainly provided by an elevated NOX4 expression, is a permissive element in the acquisition of epithelial migratory properties. The capacity of stromal cells to modify their intracellular ROS production, and accordingly, to increase epithelial motility, seems to depend on epithelial soluble factors among which TGF-b1 have a decisive role.This work was supported by the grant (1080196 to JM) from the Fondo Nacional de Ciencia y Tecnologı´a (FONDECYT) of Chile

    Social Motility in African Trypanosomes

    Get PDF
    African trypanosomes are devastating human and animal pathogens that cause significant human mortality and limit economic development in sub-Saharan Africa. Studies of trypanosome biology generally consider these protozoan parasites as individual cells in suspension cultures or in animal models of infection. Here we report that the procyclic form of the African trypanosome Trypanosoma brucei engages in social behavior when cultivated on semisolid agarose surfaces. This behavior is characterized by trypanosomes assembling into multicellular communities that engage in polarized migrations across the agarose surface and cooperate to divert their movements in response to external signals. These cooperative movements are flagellum-mediated, since they do not occur in trypanin knockdown parasites that lack normal flagellum motility. We term this behavior social motility based on features shared with social motility and other types of surface-induced social behavior in bacteria. Social motility represents a novel and unexpected aspect of trypanosome biology and offers new paradigms for considering host-parasite interactions

    CD8+ T-Cell Interleukin-7 Receptor Alpha Expression as a Potential Indicator of Disease Status in HIV-Infected Children

    Get PDF
    Background: Initiation and modification of antiretroviral therapy in HIV-infected children depend on viral load and CD4+ T-cell count. However, these surrogates have limitations, and complementary immunological markers to assess therapeutic response are needed. Our aim was to evaluate CD8+ T-cell expression of CD127 as a marker of disease status in HIV-infected children, based on adult data suggesting its usefulness. We hypothesized that CD127 expression on CD8+ T-cells is lower in children with more advanced disease. Methods: In a cross-sectional evaluation, we used flow cytometry to measure CD127+ expression on CD8+ T-cells in whole blood from HIV-infected children with varying disease status. This was compared with expression of CD38 on this subset, currently used in clinical practice as a marker of disease status. Results: 51 HIV-infected children were enrolled. There was a strong positive correlation between CD127 expression on CD8+ T-cells and CD4+ T-cell count, and height and weight z-scores, and a strong negative correlation between CD127 expression and viral load. In contrast, we found no association between CD38 expression and these disease status markers. Conclusions: CD8+ T-cell CD127 expression is significantly higher in children with better HIV disease control, and may have a role as an immunologic indicator of disease status. Longitudinal studies are needed to determine the utility of this marker as a potential indicator of HIV disease progression
    • …
    corecore