1,533 research outputs found

    The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    Get PDF
    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated

    Combined effects of body composition and ageing on joint torque, muscle activation and co-contraction in sedentary women

    Get PDF
    This study aimed to establish the interplay between body mass, adiposity, ageing and determinants of skeletal muscle strength. One hundred and two untrained healthy women categorised by age into young (Y) (mean ± SD, 26.7 ± 9.4 years) vs. old (O) (65.1 ± 7.2 years) were assessed for body fat, lean mass, plantar flexion and dorsiflexion maximum voluntary isometric contraction (MVC) torque, muscle activation capacity and antagonist muscle co-contraction. MVC torque normalised to body mass in the obese group was 35 and 29 % lower (p < 0.05) in Y and 34 and 31 % lower (p < 0.05) in O, compared with underweight and normal weight individuals, respectively. Y with ≥40 % body fat had significantly lower activation than Y with <40 % body fat (88.3 vs. 94.4 %, p < 0.05), but O did not exhibit this effect. Co-contraction was affected by ageing (16.1 % in O vs. 13.8 % in Y, p < 0.05) but not body composition. There were significant associations between markers of body composition, age, strength and activation capacity, with the strongest correlation between muscle strength and total body mass (r = 0.508 in Y, p < 0.001, vs. r = 0.204 in O, p < 0.01). Furthermore, the age-related loss in plantar flexion (PF) MVC torque was exacerbated in obese compared to underweight, normal weight and overweight individuals (-0.96 vs. -0.54, -0.57 and -0.57 % per year, p < 0.05). The negative impact of adiposity on muscle performance is associated with not only muscular but also neural factors. Overall, the effects of ageing and obesity on this system are somewhat cumulative. © 2014 The Author(s)

    How might secondary dementia prevention programs work in practice: a pre-implementation study of the APPLE-Tree program.

    Get PDF
    BACKGROUND: Over 850,000 people in the UK currently have dementia, and that number is expected to grow rapidly. One approach that may help slow or prevent this growth is personalized dementia prevention. For most people, this will involve targeted lifestyle changes. These approaches have shown promise in trials, but as of yet, the evidence for how to scale them to a population level is lacking. In this pre-implementation study, we aimed to explore stakeholder perspectives on developing system-readiness for dementia prevention programs. We focused on the APPLE-Tree program, one of several low-intensity, lifestyle-based dementia prevention interventions currently in clinical trials. METHODS: We conducted semi-structured interviews with health and social care professionals without previous experience with the APPLE-Tree program, who had direct care or managerial experience in services for older adults with memory concerns, without a dementia diagnosis. We used the Consolidated Framework for Implementation Research to guide interviews and thematic analysis. RESULTS: We interviewed 26 stakeholders: commissioners and service managers (n = 15) and frontline workers (n = 11) from eight NHS and 11 third sector organizations throughout England. We identified three main themes: (1) favorable beliefs in the effectiveness of dementia prevention programs in enhancing cognition and wellbeing and their potential to fill a service gap for people with memory concerns, (2) challenges related to funding and capacity to deliver such programs at organizations without staff capacity or higher prioritization of dementia services, and (3) modifications to delivery and guidance required for compatibility with organizations and patients. CONCLUSION: This study highlights likely challenges in scale-up if we are to make personalized dementia prevention widely available. This will only be possible with increased funding of dementia prevention activities; integrated care systems, with their focus on prevention, may enable this. Scale-up of dementia prevention programs will also require clear outlines of their core and adaptable components to fit funding, patient, and facilitator needs

    Body Fat Percentage, Body Mass Index, Fat Mass Index and the Ageing Bone: Their Singular and Combined Roles Linked to Physical Activity and Diet

    Get PDF
    This study took a multi-analytical approach including group differences, correlations and unit-weighed directional z-scores comparisons to identify key mediators of bone health. 190 participants (18-80yrs) were categorized by body fat%, body mass index (BMI) and fat mass index (FMI) to examine the effect of differing obesity criteria on bone characteristics. A subset of 50 healthy-eating middle to older aged adults (44-80yrs) were randomly selected to examine any added impact of lifestyle and inflammatory profiles. Diet was assessed using a 3-day food diary, bone mineral density (BMD) and content (BMC) by dual energy x-ray absorptiometry, physical activity using the Baecke questionnaire, and endocrine profiling using multiplex luminometry. Obesity classed via BMI positively affected 20/22, whereas FMI was associated with 14/22 and adiposity only modulated 9/22 BMC and BMD-related outcome measures. Whilst bivariate correlations only linked Vitamin A and relative protein intake with BMD, the Z-score composite summary presented a significantly different overall dietary quality between healthy and osteopenic individuals. In addition, bivariate correlations from the subset revealed daily energy intake, sport-based physical activity and BMI positive mediator of 7/10 BMD sites with age and body fat% shown to be negative mediators of bone characteristics. In conclusion whilst BMI is a good indicator of bone characteristics, high body fat% should be the focus of osteoporosis risk with ageing. Interestingly, high BMI in conjunction with moderate to vigorous activity supplemented with an optimal diet (quality and quantity) are identified of positive modulators of bone heath

    Calculated and Measured Ultrasonic Response of an Elastic Cylinder Embedded in an Elastic Medium

    Get PDF
    itanium metal matrix composite (TMC) materials are fabricated by consolidating alternate layers of suitable titanium foils and silicon carbide fibers. The foils are generally 0.005-0.010 in thick and the fibers have diameters ranging from 0.004 in. to 0.0055 in. Furthermore, the fibers have a core of one material and an outer annular ring of silicon carbide (Fig. 1). The fibers used in the work described here, designated SCS6 fibers, have an outer diameter of 0.0055 in. and an inner carbon core with a diameter of 0.0013 in. During consolidation, the matrix material is heated under pressure so that it flows around the fibers, forming a strong interfacial bond with the fiber and a strong diffusion bond where the adjacent foils come in contact. Several types of defects can occur during the consolidation process. There can be lack of bonding or incomplete bonding between the adjacent foils or between the matrix and the fibers. It is also possible that an undesirable reaction can occur between the fiber and the matrix, producing a brittle zone that will degrade the strength of the material.</p

    Quasi-normal frequencies: Key analytic results

    Full text link
    The study of exact quasi-normal modes [QNMs], and their associated quasi-normal frequencies [QNFs], has had a long and convoluted history - replete with many rediscoveries of previously known results. In this article we shall collect and survey a number of known analytic results, and develop several new analytic results - specifically we shall provide several new QNF results and estimates, in a form amenable for comparison with the extant literature. Apart from their intrinsic interest, these exact and approximate results serve as a backdrop and a consistency check on ongoing efforts to find general model-independent estimates for QNFs, and general model-independent bounds on transmission probabilities. Our calculations also provide yet another physics application of the Lambert W function. These ideas have relevance to fields as diverse as black hole physics, (where they are related to the damped oscillations of astrophysical black holes, to greybody factors for the Hawking radiation, and to more speculative state-counting models for the Bekenstein entropy), to quantum field theory (where they are related to Casimir energies in unbounded systems), through to condensed matter physics, (where one may literally be interested in an electron tunelling through a physical barrier).Comment: V1: 29 pages; V2: Reformatted, 31 pages. Title changed to reflect major additions and revisions. Now describes exact QNFs for the double-delta potential in terms of the Lambert W function. V3: Minor edits for clarity. Four references added. No physics changes. Still 31 page

    The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men

    Get PDF
    Purpose: We investigated the combined impact of ageing and obesity on Achilles tendon (AT) properties in vivo in men, utilizing three classification methods of obesity. Method: Forty healthy, untrained men were categorised by age (young (18–49 years); older (50–80 years)), body mass index (BMI; normal weight (≥18.5–6–9); high fat (>9). Assessment of body composition used dual-energy X-ray absorptiometry, gastrocnemius medialis (GM)/AT properties used dynamometry and ultrasonography and endocrine profiling used multiplex luminometry. Results: Older men had lower total range of motion (ROM; −11%; P = 0.020), GM AT force (−29%; P < 0.001), stiffness (−18%; P = 0.041), Young’s modulus (−22%; P = 0.011) and AT stress (−28%; P < 0.001). All three methods of classifying obesity revealed obesity to be associated with lower total ROM (P = 0.014–0.039). AT cross sectional area (CSA) was larger with higher BMI (P = 0.030). However, after controlling for age, higher BMI only tended to be associated with greater tendon stiffness (P = 0.074). Interestingly, both AT CSA and stiffness were positively correlated with body mass (r = 0.644 and r = 0.520) and BMI (r = 0.541 and r = 0.493) in the young but not older adults. Finally, negative relationships were observed between AT CSA and pro-inflammatory cytokines TNF-α, IL-6 and IL-1β. Conclusions: This is the first study to provide evidence of positive adaptations in tendon stiffness and size in vivo resulting from increased mass and BMI in young but not older men, irrespective of obesity classification

    Polymorphisms in PTK2 are associated with skeletal muscle specific force: an independent replication study

    Get PDF
    Purpose The aim of the study was to investigate two single nucleotide polymorphisms (SNP) in PTK2 for associations with human muscle strength phenotypes in healthy men. Methods Measurement of maximal isometric voluntary knee extension (MVCKE) torque, net MVCKE torque and vastus lateralis (VL) specific force, using established techniques, was completed on 120 Caucasian men (age = 20.6 ± 2.3 year; height = 1.79 ± 0.06 m; mass = 75.0 ± 10.0 kg; mean ± SD). All participants provided either a blood (n = 96) or buccal cell sample, from which DNA was isolated and genotyped for the PTK2 rs7843014 A/C and rs7460 A/T SNPs using real-time polymerase chain reaction. Results Genotype frequencies for both SNPs were in Hardy–Weinberg equilibrium (X 2 ≤ 1.661, P ≥ 0.436). VL specific force was 8.3% higher in rs7843014 AA homozygotes than C-allele carriers (P = 0.017) and 5.4% higher in rs7460 AA homozygotes than T-allele carriers (P = 0.029). No associations between either SNP and net MVCKE torque (P ≥ 0.094) or peak MVCKE torque (P ≥ 0.107) were observed. Conclusions These findings identify a genetic contribution to the inter-individual variability within muscle specific force and provides the first independent replication, in a larger Caucasian cohort, of an association between these PTK2 SNPs and muscle specific force, thus extending our understanding of the influence of genetic variation on the intrinsic strength of muscle.Published versio

    TTN genotype is associated with fascicle length and marathon running performance.

    Get PDF
    Titin provides a molecular blueprint for muscle sarcomere assembly and sarcomere length can vary according to titin isoform expression. If variations in sarcomere length influence muscle fascicle length, this may provide an advantage for running performance. Thus the aim of this study was to investigate if the titin (TTN) rs10497520 polymorphism was associated with muscle fascicle length in recreationally active men (RA; n = 137) and marathon personal best time in male marathon runners (MR; n = 141). Fascicle length of the vastus lateralis was assessed in vivo using B-mode ultrasonography at 50% of muscle length in RA. All participants provided either a whole blood, saliva or buccal cell sample, from which DNA was isolated and genotyped using real-time polymerase chain reaction. Vastus lateralis fascicle length was 10.4% longer in CC homozygotes, those carrying two copies of the C-allele, than CT heterozygotes (p = 0.003) in RA. In the absence of any TT homozygotes, reflective of the low T-allele frequency within Caucasian populations, it is unclear if fascicle length for this group would have been smaller still. No differences in genotype frequency between the RA and MR groups were observed (p = 0.500), although within the MR group the T-allele carriers demonstrated marathon personal best times 2 min 25 s faster than CC homozygotes (p = 0.020). These results suggest that the T-allele at rs10497520 in the TTN gene is associated with shorter skeletal muscle fascicle length and conveys an advantage for marathon running performance in habitually trained men. This article is protected by copyright. All rights reserved
    • …
    corecore