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Abstract: This study took a multi-analytical approach including group differences, correlations and 12 
unit-weighed directional z-scores comparisons to identify key mediators of bone health. 190 13 
participants (18-80yrs) were categorized by body fat%, body mass index (BMI) and fat mass index 14 
(FMI) to examine the effect of differing obesity criteria on bone characteristics. A subset of 50 15 
healthy-eating middle to older aged adults (44-80yrs) were randomly selected to examine any added 16 
impact of lifestyle and inflammatory profiles. Diet was assessed using a 3-day food diary, bone 17 
mineral density (BMD) and content (BMC) by dual energy x-ray absorptiometry in the lumbar, 18 
thoracic, (upper and lower) appendicular and pelvic areas, physical activity using the Baecke 19 
questionnaire, and endocrine profiling using multiplex luminometry. Obesity classed via BMI 20 
positively affected 20 out of 22 BMC and BMD-related outcome measures, whereas FMI was 21 
associated with 14 outcome measures and adiposity only modulated 9 out of 22 BMC and BMD-22 
related outcome measures. Whilst bivariate correlations only linked Vitamin A and relative protein 23 
intake with BMD, the Z-score composite summary presented a significantly different overall dietary 24 
quality between healthy and osteopenic individuals. In addition, bivariate correlations from the 25 
subset revealed daily energy intake, sport-based physical activity and BMI positive mediator of 7 26 
out of 10 BMD sites with age and body fat% shown to be negative mediators of bone characteristics. 27 
In conclusion, whilst BMI is a good indicator of bone characteristics, high body fat% should be the 28 
focus of osteoporosis risk with ageing. Interestingly, high BMI in conjunction with moderate to 29 
vigorous activity supplemented with an optimal diet (quality and quantity) are identified as positive 30 
modulators of bone heath. 31 

 32 

Keywords: nutrition; aging; adiposity; physical activity; bone; inflammation. 33 
 34 

1. Introduction 35 

Bone loss in men and women is a consequential process of ageing [1] with mean variations 36 
estimated to range between 0.86% to 1.12% bone loss per year in elderly men and women [2]. 37 
However, at its extreme, age-related bone loss can lead to osteoporosis, a condition characterized by 38 
an increased risk of bone fractures [3] through a reduction in bone tissue altering the structural 39 
integrity/architecture [4] and even leading to premature mortality [5]. Previous research has 40 
identified independent accelerants of poor bone health such as decreased physical activity (PA) 41 
caused by the reduction of mechanical loading/stress placed on bone [6], poor quality and inadequate 42 
nutritional intake [4] and obesity [7]. Whilst existing research has independently examined how each 43 
of these lifestyle behaviors influence bone health, questions remain on the cumulative effect of dietary 44 
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content/quality, type of PA in conjunction with age. Moreover, whether obesity definition and/or 45 
classification has any effect on the conclusion regarding bone health modulation, has yet to be 46 
categorically understood, especially in a middle to older age adult population. 47 

Diet and PA are two modifiable behaviors that have the potential to affect numerous systems 48 
that regulate bone homeostasis through influencing key endocrine regulators of bone metabolism [4]. 49 
Key nutrients positively associated with bone health include calcium [8], magnesium [9], phosphorus 50 
[10], potassium [11], Vitamin D (VitD) [12], Vitamin K [13], protein [14] and omega 3 fatty acids [15]. 51 
A number of dietary elements in fact negatively influence bone health including saturated fat [16] 52 
and Vitamin A [17]. However, the consensus within the literature focuses on two nutrients with 53 
regards to bone health, that being calcium and VitD. Calcium is the key nutrient involved in bone 54 
homeostasis due to its role in bone growth and development [4,8] with current UK guidelines 55 
recommending >700mg/day [18] and various research studies utilizing doses as high as 1600mg [19]. 56 
Interestingly, whilst calcium supplementation may influence bone health, it cannot be used as a 57 
replacement for prescribed estrogen, bisphosphonates, or calcitonin therapy, but only as a 58 
preventative measure when individuals are still within a normal T-score range [19]. Nevertheless, it 59 
remains to be seen if any specific interaction exists between dietary calcium and other nutrients 60 
positively associated with bone dimensional characteristics or that may aid in the absorption of 61 
calcium such as oligosaccharides [20] and VitD [21]. Then, and only then, might the optimum effect 62 
of calcium supplementation on bone health be conclusive. 63 

The second key nutrient is VitD, as it is purported to being crucial not only for bone health but 64 
previous research has also reported its positive association with muscle strength prominently 65 
through improved neuromuscular function [22] and stimulation of protein synthesis [23]. The current 66 
literature however suggests the benefits of VitD supplementation may only be beneficial in 67 
individuals who are VitD deficient [24] especially for musculoskeletal parameters [25,26]. VitD 68 
deficiency impacts bone in two different ways, the first resulting in inadequate mineralization of the 69 
skeleton potentially causing osteomalacia, yet this may be related to primary hyperparathyroidism 70 
created by the VitD deficiency [27] and the second through negatively affecting intestinal absorption 71 
of calcium [27]. Therefore, if conforming to the recommended daily VitD 10µg intake [18], questions 72 
remain whether (a) a linear relationship between bone health and VitD exists where the individual is 73 
not VitD deficient [24], or (b) VitD benefits are only observed when combined with sufficient 74 
nutrients positively related to bone health (e.g. calcium, phosphorus, magnesium and Vitamin K).  75 

As mentioned above, negative dietary contributors of bone health include high saturated fat 76 
intake [16] and Vitamin A [17]. The evidence demonstrates an inverse relationship between dietary 77 
saturated fat intake and BMD potentially due to inhibiting calcium absorption and down regulating 78 
osteoblast formation [16]. Similarly, a high level of Vitamin A triggers production of osteoclasts 79 
subsequently causing bone breakdown [17]. Therefore, this demonstrates that independent 80 
associations and the interaction between nutrients need further scrutiny to aid understanding of how 81 
nutrients interact to influence bone health and ultimately help formulate individualized habitual 82 
nutritional guidelines. 83 

In conjunction with habitual diet, placing mechanical load/stress on bones is known to stimulate 84 
an increase in bone formation [28] and resultant bone strength [29]. This has been shown from 85 
adolescents to the elderly [30,31]. Thus impactful PA maintains its status as an effective mechanism 86 
in combating age-related decrease in BMD. Interestingly, PA is generally grouped as one behavior in 87 
large cross-sectional or longitudinal studies in regression models. Arguably, for all and especially a 88 
middle aged or an elderly population group, PA ought to be broken down into different strands (e.g. 89 
work, leisure and sport), modalities (e.g. aerobic vs. resistance) or intensity (e.g. bowls vs. gym 90 
sessions) in order to distinguish appropriate, effective and palatable lifestyle PA interventions. 91 
However, the focus of the existing body of research on PA and BMD is between structured 92 
resistance/weight bearing and aerobic exercise [32,33]. Selection of a preference for modality is 93 
however intuitive, as both forms of exercise elicit similar increases in spine BMD following 12-24 94 
months of structured PA (resistance 0.8-6.8% increase [32-34] vs. aerobic 1.4-7.8% increase [32,35-37]). 95 
Interestingly, structured PA only constitutes ~ % of an individual’s waking hours if just achieving 96 
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the recommended daily 30 minutes of moderate to PA [38] (assuming 16 hours awake), thus 97 
potentially missing quantifiable daily activity markers that may influence bone health. Therefore, 98 
accurate representations of an individual’s activity profile may aid in the development of detailed 99 
predictions models and sustainable prescription guidelines to prevent the escalation of bone health 100 
towards an osteoporotic profile. 101 

Thus, the present study was spilt into two sections, with the primary aim to examine how obesity 102 
defined through 3 different methods affects bone as we age. The second aim was to take a multi-103 
analytical approach to examining the lifestyle factors of bone mass homeostasis ranging from 104 
habitual nutritional intake to PA. In this way, the study aimed to prioritize key identifiable areas that 105 
may aid in the reduction of ageing-associated osteoporosis risk. It was hypothesized that: (1) High 106 
adiposity would increase osteoporosis risk with age; (2) optimal dietary composition (low saturated 107 
fats, high Calcium, Vitamin D, Vitamin C, oligosaccharide, Protein, Omega 3 and 6 Fatty Acids, 108 
Vitamin K, Zinc, Magnesium and Phosphorus) would promote bone health; (3) the negative impact 109 
of high adiposity would be greater on under-loaded bone sites; (4) high levels of structured PA (more 110 
so than work or leisure-based PA) would improve BMD; (5) endocrine profiling would be linearly 111 
associated with diet and hence bone health. 112 

 113 

2. Materials and Methods  114 

3.1. Participants 115 

One hundred and ninety participants (males=65 and females=125) aged 18-80yrs were recruited 116 
and screened prior to undertaking any assessments through a general health questionnaire, where 117 
their PA level was ascertained. Participants were spilt into two groups either trained (n=27) and 118 
untrained (n=163) with untrained individuals the main focus of analyses with regard to impact of 119 
obesity on bone health. Classification of being trained was denoted by undertaking structured 120 
exercise of over 3 hours per week. Primarily participants were categorized by three different methods 121 
of classifying obesity to determine the effect of obesity classification on bone characteristics. These 122 
were: Body Fat% - Male = normal adipose NA  < %  high adiposity HA  %  NA  female = NA 123 
< %  HA % , BMI Underweight BMI <  Normal weight NW  BMI   <25), Overweight 124 
BMI  <  and Obese BMI  , and fat mass index (FMI; Fat deficit male <3, female<5; Normal 125 

male 3-6, female 5-9; Excess fat male >6-9, female >9-13 and Obese male >9, female >13). 126 
Secondly, to determine the effect of obesity, PA and nutrition on bone health with ageing, 50 127 

untrained participants (males=15 and females=35) aged 43-80 yrs (see Supplementary Table 1) were 128 
randomly selected to cover the body composition and age spectra, and then categorized by their bone 129 
health (Normal range T-score  -1.0 n=42 and Osteopenia T-score < -1.0 n=8) for Z-score comparisons. 130 
Participants were excluded if they had changed their diet and/or PA levels in the past 12 months and 131 
were taking any medication related to osteoporosis/bone health. On completion of the health and PA 132 
questionnaire, their dominant arm and leg were ascertained through verbal questioning. Prior to the 133 
commencement of the study, participants gave their written informed consent and all the procedures 134 
in this study were in accordance with the Declaration of Helsinki and had approval from the 135 
Manchester Metropolitan University ethics committee (Ethics Committee Reference Number: 136 
09.03.11 (ii)). 137 

3.2. Measurement of Body Composition  138 

BMC, BMD and overall body composition (both fat and lean mass) were established using a dual 139 
energy x-ray absorptiometry scanner (Hologic Discovery: Vertec Scientific Ltd, Reading, UK) to 140 
accurately quantify bone characteristics and define obesity following a 12-hour fasted period. Prior 141 
to the arrival of each participant, a control phantom was scanned to ensure the reliability and 142 
reproducibility of BMC, BMD and area scan results (accepted coefficient variation of <0.6%). On 143 
arrival, participants were given a hospital gown and asked to remove all clothing and jewelry to 144 
ensure the process was standardized between participants.  Participants were then asked to lay in 145 
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the center of the scanning bed in a supine position with their head positioned in the center just inside 146 
of the scanners viewing field. The investigator ensured the participant’s whole body was positioned 147 
correctly to guarantee there was no contact between their trunk and appendicular mass, with their 148 
legs internally rotated (10-25°) to expose the fibula and the neck of femur and then strapped in 149 
position using micropore tape (3M, Bracknell, Berkshire, U.K.) to avoid any discomfort and 150 
movement during the 7-min scanning procedure (whole body, EF 8.4 lSv). Scan results were 151 
calculated using the Hologic APEX software (version 3.3) and presented in terms of whole body lean 152 
mass, fat mass, BMC, BMD and manually digitized using anatomical markers classifying defined 153 
body segments by their dominant and non-dominant side (arm, ribs, thoracic and lumbar spine, 154 
pelvis and legs). The same researcher completed analysis of defined body segments during the entire 155 
study period. Both T and Z-scores were calculated using gender and ethnic group specific data from 156 
the national health and nutrition examination database (NHANES III). 157 

 158 
Figure 1. Representative dual energy x-ray absorptiometry scans of a female (A; T-score: -2.0) and male (B; T-159 
score: -1.2) with osteopenia. 160 

3.3. Nutrition Intake & Analysis 161 

Habitual dietary intake was assessed in 50 participants using a three-day food diary recorded 162 
over two weekdays and one weekend day [39]. At the point of handing out a blank food diary, 163 
participants were also given in depth instructions on the level of detail to record daily food and drink 164 
intakes including meal time, food/ingredients weight and drinks volume, commercial brand names 165 
of food/ingredients and drink, any leftovers and cooking preparation methods. Participants were 166 
asked to maintain their normal eating habits over the three-day period. Dietary analysis was 167 
conducted using Nutritics software (version 1.8, Nutritics Ltd., Co. Dublin, Ireland) with one 168 
researcher completing all analyses. Participants’ total nutritional intake and identified positive bone 169 
health related nutrients were scored against recommended daily values [40,41] (see Supplementary 170 
Table . Estimation of participants’ metabolic balance defined in Supplementary Table 2) was 171 
ascertained using the Harris Benedict equation [42], through the calculation of participants’ basal 172 
metabolic rate when accounting for PA levels. This method of quantifying energy expenditure has 173 
been previously validated in mid to older aged adults [43]. 174 

3.4. PA Questionnaire 175 

Participants PA status in 50 participants (the same subsample who also completed the food 176 
diaries) was established using the Baecke PA questionnaire [44]. The questionnaire is split into three 177 
sections that denote work, sport and leisure based PA and furthermore, gives a combined score 178 
categorized as a global index of all these sub-sections. Participants that did not work due to retirement 179 
from their previous job were asked to fill in the work section as if their daily life/activities were their 180 
job. Each section was scored using a five-point scale and was calculated using a predetermined 181 
formula [44]. Work scoring focused on the physical intensity of working and factored in time spent 182 
sitting, whilst leisure scoring focused upon leisure based non-structured PA and factored in time 183 
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spent watching television. Sport scoring denoted structured PA categorized by the intensity, 184 
repetition and duration of the activity undertaken. 185 

3.5. Serum Inflammatory Cytokine Concentration 186 

Prior to any physical testing, the same 50 participants who had provided food and PA data, were 187 
also asked to consent to the blood sampling. Thus, our results include data from the 33 participants 188 
able to provide the required 10 ml fasted (12 hours) blood sample between 8am and 9am, having not 189 
performed vigorous exercise for  hours prior. Blood samples were unobtainable for  participants 190 
due to either sampling failure or withheld consent. Blood was collected in anticoagulant-free 191 
vacutainers (BD Vacutainer Systems, Plymouth, UK) and rested on crushed ice for 10-15 minutes. 192 
Samples were then placed into a centrifuge (IEC CL31R, Thermo Scientific, Massachusetts, United 193 
States) for 10 minutes at 4000rpm (2700  g   after which serum was extracted and stored in  ml 194 
aliquots at −  °C until subsequent analysis. 195 

Multiplex luminometry was used to measure the serum concentrations of nine inflammatory 196 
cytokines (pro-inflammatory: interleukin (IL)- , IL-6, tumor necrosis factor (TNF)- , Granulocyte-197 
colony stimulating factor (G-CSF), interferon gamma (IFNg); anti-inflammatory: IL-10, transforming 198 
growth factor (TGF)- ,  and  and five chemokines IL-8, monocyte chemoattractant protein 199 
(MCP)-1, macrophage inflammatory protein (MIP)- , MIP- , regulated on activation, normal T 200 
cell expressed and secreted (RANTES). A 3-plex panel was used to measure TGF- , TGF-  and 201 
TGF-  concentrations R&D Systems Europe Ltd, Abingdon, UK) and a Bio-Plex Pro Human 202 
Inflammation Panel Assay (Bio-Rad laboratories Ltd., Hemel Hempstead, UK) was used to measure 203 
the remaining  cytokines, following the manufacturer’s instructions. Samples were analyzed using 204 
a Bio-Plex 200 system (Bio-Rad laboratories Ltd., Hemel Hempstead, UK). 205 

3.6. Statistical Analyses 206 

Statistical analyses were carried out using SPSS (Version 22, SPSS Inc., Chicago, IL, USA). To 207 
determine parametricity (for adiposity, BMI, FMI, bone health), Kolmogorov Smirnov (whole 208 
sample n>50) or Shapiro Wilk (if sub-sample n<50) were utilized to determine if the sample was 209 
normally distributed and Levene’s tests to determine homogeneity of variance between groups. If 210 
parametric assumptions were met, between group differences were examined by independent t-tests 211 
(for adiposity and bone health) or one-way ANOVA (for BMI and FMI) with post hoc pairwise 212 
comparisons conducted using the Bonferroni correction. However, if parametric assumptions were 213 
breached, between group differences were examined by Mann-Whitney U test (for adiposity) or a 214 
Kruskal-Wallis non-parametric ANOVA (for BMI and FMI) with post hoc pairwise comparisons 215 
being examined by Dunn correction. Pearson (or Spearman rank order for non-parametric data sets) 216 
bivariate correlations were used to define any associations between bone vs. age, PA scores, 217 
adiposity, BMI and nutritional variables, as well as serum cytokine concentration vs. bone health. 218 
Overall synthesis, including radar graphs (Microsoft Excel, Version 2013 Washington, USA), of 219 
participants habitual diet, participant characteristics and endocrine profile categorized by bone 220 
health (normal range vs. osteopenia) was computed through Z-scores  (i.e. [mean of group  mean 221 
of sample population] ÷ standard deviation of sample population). Comparisons between Z-scores 222 
of the grouping variables were conducted by converting Z-scores into percentages using a Z-score 223 
comparison table. Calculation of unit-weighted Z-scores including direction for habitual nutritional 224 
intake was done for all nutrients of interest. Unit-weighted Z-score for participant characteristics 225 
including direction was calculated through positive signs for PA characteristics and lean mass, versus 226 
negative signs for age, BMI, body fat% and fat mass. Finally, unit-weighted Z-scores including 227 
direction was calculated for participants’ endocrine profile using negative signs for IL- , IL-6, TNF-228 

, G-CSF, IFNg, IL-8, MCP-1, MIP- , MIP-  and RANTES, versus positive signs for IL-10, TGF- , 229 
 and . Data are reported as mean (SD) and statistical significance was accepted when P . .  230 

 231 

 232 
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3. Results 233 

3.1. Descriptive characteristics of participants 234 

Table  displays the descriptive characteristics of  untrained participants’ categorized by  235 
different methods of classifying obesity: Body fat%, BMI and FMI (Table 1). Descriptive 236 
characteristics, habitual nutritional intake, PA scores and endocrine profile of the 50 untrained 43-80 237 
yrs old middle to older aged sub-sample are reported in Supplementary Table 1, where it was 238 
observed that were no differences in PA scores in the 50 participants between body fat%, BMI, FMI 239 
and bone health classifications. 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 

 260 

 261 

262 
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Table 1. 163 Untrained participants’ anthropometric characteristics categorized by three methods of classifying obesity (body fat%, BMI and FMI). 263 
 Body Fat%  Body Mass Index 

 
Fat Mass Index 

  NA (n=83) HA/Ob (n=80)   U (n=9) NW (n=53) Ov (n=54) Ob (n=47)   FD (n=8) NW  (n=53) EF (n=62) Ob (n=40) 

Characteristics 
            

Age (yrs) 38 ± 21 a 49 ± 22 b  34 ± 19 ab 41 ± 22 a 50 ± 23 b 39 ± 19 ab 
 

36 ± 21 ab 38 ± 21 a 50 ± 23 b 40 ± 19 ab 

Height (m) 1.67 ± 0.09 a 1.66 ± 0.08 a  1.66 ± 0.06 a 1.66 ± 0.09 a 1.68 ± 0.09 a 1.66 ± 0.08 a 
 

1.65 ± 0.07 a 1.66 ± 0.09 a 1.67 ± 0.09 a 1.66 ± 0.08 a  

Body Mass (kg) 65.5 ± 14.1 a 85.4 ± 15.8 b  50.0 ± 4.3 a 60.3 ± 7.8 a 77.1 ± 9.1 b 94.8 ± 13.8 c 
 

50.3 ± 4.5 a 61.3 ± 10.1 a 77.0 ± 10.3 b 96.1 ± 13.7 c 

BMI (kg/m2) 23.4 ± 3.8 a 30.9 ± 3.8 b  18.2 ± 0.6 a 21.8 ± 1.6 a 27.2 ± 1.2 b 34.5 ± 4.5 c  
 

18.4 ± 1.0 a 22.0 ± 2.4 a 27.4 ± 2.0 b 35.0 ± 4.7 c 

Body Fat (%) 30.3 ± 6.1 a 41.5 ± 6.7 b  25.8 ± 4.6 a 30.4 ± 6.4 a 36.2 ± 7.0 b 43.3 ± 5.8 c 
 

23.7 ± 2.1 a 29.7 ± 5.6 b 37.1 ± 6.4 c 44.3 ± 5.7 d 

Fat Mass (kg) 19.4 ± 6.0 a 34.7 ± 9.6 b  12.5 ± 2.2 a 17.7 ± 3.8 b 26.9 ± 4.1 c 40.1 ± 8.6 d 
 

11.6 ± 1.3 a 17.5 ± 3.4 a 27.5 ± 4.2 b 41.6 ± 8.4 c 

FMI (kg/m2) 7.0 ± 2.2 a 12.7 ± 3.8 b  4.6 ± 0.9 a 6.5 ± 1.6 a 9.6 ± 1.9 b 14.7 ± 3.5 c 
 

4.3 ± 0.5 a 6.4 ± 1.4 a 9.9 ± 1.9 b 15.3 ± 3.5 c 

Lean Mass (kg) 42.1 ± 11.0 a 46.1 ± 9.4 b  34.1 ± 4.1 a 38.8 ± 7.3 a 45.8 ± 9.7 b 49.9 ± 8.6 c 
 

35.3 ± 3.7 a 39.8 ± 8.5 a 45.1 ± 9.7 b 49.8 ± 8.6 b 

Android Fat Mass (kg) 1.43 ± 0.71 a 3.14 ± 1.07 b 
 

0.72 ± 0.26 a 1.23 ± 0.43 a 2.29 ± 0.49 b  3.74 ± 1.02 c 
 

0.58 ± 0.09 a 1.20 ± 0.41 a 2.36 ± 0.48 b 3.92 ± 0.98 c 

Gynoid Fat Mass (kg) 3.61 ± 1.02 a 5.88 ± 1.67 b 
 

2.61 ± 0.42 a  3.33 ± 0.76 a 4.73 ± 1.14 b 6.69 ± 1.41 c 
 

2.47 ± 1.02 a 3.31 ± 0.63 a 4.82 ± 1.13 b 6.90 ± 1.43 c 

Android:Gynoid Ratio 0.89 ± 0.19 a 1.07 ± 0.15 b   0.69 ± 0.12 a 0.86 ± 0.19 a 1.04 ± 0.17 bc 1.08 ± 0.10 bc   0.66 ± 0.08 a 0.85 ± 0.17 a 1.05 ± 0.17 b 1.09 ± 0.10 b 

1Data are Mean ± Standard Deviation. Group significant differences are highlighted in bold. Labelled Adiposity, BMI and FMI pairwise means in a row without a common letter differ, P < 0.05. Non-264 
parametric tests are highlighted in grey shading. Abbreviations: EF, Excess Fat; FD, Fat Deficit; HA, High Adipose; NA, Normal Adipose; NW, Normal Weight; Ob, Obese; Ov, Overweight; U, Underweight 265 

 266 

 267 

 268 

 269 

 270 
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3.2. Body fat%, BMI and FMI’s impact on bone mineral content and density 271 

The positive effect of obesity on bone was demonstrated in all three classifications to differing 272 
degrees. BMI was found to have the greatest effect on bone properties through increasing BMI 273 
classification being positively associated with 20/22 measured bone characteristics (Table 2). This 274 
was followed by increasing FMI classification being positively associated with 14/22 bone 275 
characteristics and finally through a higher body fat% being positively associated with 9/22 positive 276 
bone characteristics (Table 2). Interpretation of these results would suggest as expected BMI to have 277 
greatest loading effect of bone. Interestingly though, the effect of loading on bone appeared to be 278 
uniform across loaded (lumbar, pelvis and lower limbs) and unloaded (thoracic, ribs and upper 279 
limbs) bone sites (Table 2). The same pattern was continued to lesser extent in the randomly 280 
selected 50 middle to older aged adults (as observed in Supplementary Table 3). However, there 281 
was a reduction in the number of significant effects of FMI on bone characteristics, which may be 282 
explained by a reduction in total mass due to lower lean mass in the older cohort. 283 

When comparing the 3 definitions of obesity classified by bodyfat%, BMI and FMI utilizing 284 
spearman rho correlations of osteoporosis risk (T score) vs age, the only significant negative 285 
correlation observed was for obesity classified by body fat% (r=-0.43; P<0.0061). These findings were 286 
confirmed in the middle to older age group, as a linear regression revealed only obese individuals 287 
classified by body fat% to be negatively associated with increasing age and T score (r=0.46; r2=0.21; 288 

=-0.084; P=0.008). 289 
Finally of secondary note, comparison of bone characteristics between the untrained and 290 

trained participants revealed the trained participants to have 7-50% significantly greater BMC and 291 
BMD characteristics at all body locations. 292 
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Table 2. Bone mineral content (BMC) and bone mineral density (BMD) characteristics in 163 untrained participants categorized by body fat%, body mass index (BMI) and fat mass 293 
index (FMI) classifications. 294 
 295 

 Body Fat%  BMI 
 

FMI 

  NA (n=83) HA/Ob (n=80)   U (n=9) NW (n=53) Ov (n=54) Ob (n=47)   FD (n=8) NW  (n=53) EF (n=62) Ob (n=40) 

BMC (g)             
Total   2404 ± 499 a 2532 ± 528 a  2000 ± 348 a 2280 ± 401 a 2603 ± 599 b 2609 ± 443 b  2123 ± 370 a 2324 ± 457 a 2540 ± 566 b 2609 ± 469 b 

Thoracic 111 ± 28 a 127 ± 32 b  91 ± 16 a 107 ± 22 a 129 ± 37 b 127 ± 28 b  89 ± 18 a 111 ± 29 b 124 ± 32 c 129 ± 30 c 

Lumbar  66 ± 17 a 66 ± 17 a  59 ± 18 a 64 ± 15 a 69 ± 20 a 67 ± 16 a  62 ± 18 a 65 ± 14 a 68 ± 20 a 67 ± 16 a 

Pelvis  267 ± 78 a 260 ± 82 a  219 ± 69 a 250 ± 68 a 267 ± 93 a 283 ± 74 a  228 ± 78 a 259 ± 72 a 262 ± 86 a 280 ± 80 a 

Dominant        
 

    

Ribs 95 ± 26 a 115 ± 29 b  74 ± 13 a 87 ± 21 a 108 ± 26 b 128 ± 24 c  79 ± 15 a 88 ± 20 a 106 ± 28 b 130 ± 28 c 

Arm 162 ± 40 a 178 ± 46 b  132 ± 16 a 156 ± 34 ab 180 ± 50 bc 181 ± 42 c  140 ± 24 a 159 ± 39 a 175 ± 47 b 182 ± 42 b 

Leg 452 ± 114 a 479 ± 119 a  363 ± 59 a 424 ± 93 a 494 ± 130 b 499 ± 108 b  391 ± 61 a 435 ± 107 a 481 ± 123 b 495 ± 115 b 

Non-Dominant             
Ribs 96 ± 27 a 108 ± 33 b  72 ± 14 a 87 ± 17 a 107 ± 30 b 118 ± 33 c  77 ± 16 a 88 ± 19 a 106 ± 30 b 117 ± 35 c 

Arm 154 ± 38 a 170 ± 51 b  123 ± 15 a 147 ± 32 a 175 ± 50 b 172 ± 50 b  131 ± 19 a 151 ± 38 a 169 ± 47 b 173 ± 52 b 

Leg 438 ± 121 a 460 ± 129 a  352 ± 69 a 407 ± 96 a 486 ± 142 b 471 ± 123 b  378 ± 69 a 418 ± 112 a 471 ± 132 b 469 ± 131 b 

BMD (g/cm²)             
Total   1.190 ± 0.121 a 1.206 ± 0.139 a  1.097 ± 0.076 a 1.160 ± 0.108 a 1.227 ± 0.156 b 1.227 ± 0.111 b  1.136 ± 0.077 a 1.173 ± 0.119 a 1.209 ± 0.148 a 1.225 ± 0.118 a 

Thoracic 1.001 ± 0.147 a 1.084 ± 0.175 b  0.909 ± 0.083 a 0.978 ± 0.123 ab 1.060 ± 0.190 bc 1.118 ± 0.153 c  0.944 ± 0.075 a 0.999 ± 0.135 a 1.038 ± 0.188 a 1.125 ± 0.151 b 

Lumbar  1.001 ± 0.148 a 1.149 ± 0.198 a  1.068 ± 0.152 a 1.125 ± 0.164 a 1.161 ± 0.229 a 1.177 ± 0.182 a  1.118 ± 0.168 a 1.136 ± 0.151 a 1.144 ± 0.232 a 1.178 ± 0.198 a 

Pelvis  1.001 ± 0.149 a 1.266 ± 0.177 a  1.009 ± 0.095 a 1.172 ± 0.156 a 1.270 ± 0.187 b 1.322 ± 0.161 b  1.100 ± 0.132 a 1.201 ± 0.163 a 1.256 ± 0.184 ab 1.310 ± 0.169 b 

Dominant   
 

    
 

    

Ribs 0.711 ± 0.089 a 0.713 ± 0.100 a  0.650 ± 0.062 a 0.691 ± 0.081 a 0.724 ± 0.116 a 0.731 ± 0.078 a  0.690 ± 0.070 a 0.702 ± 0.089 a 0.711 ± 0.111 a 0.729 ± 0.078 a 

Arm 0.797 ± 0.132 a 0.848 ± 0.154 b  0.700 ± 0.025 a 0.786 ± 0.127 ab 0.842 ± 0.164 bc 0.863 ± 0.133 c  0.715 ± 0.052 a 0.801 ± 0.155 ab 0.829 ± 0.144 bc 0.860 ± 0.132 c 

Leg 1.209 ± 0.172 a 1.254 ± 0.179 a  1.090 ± 0.052 a 1.166 ± 0.180 a 1.267 ± 0.177 b 1.291 ± 0.148 b  1.126 ± 0.061 ab 1.183 ± 0.191 a 1.245 ± 0.169 ab 1.293 ± 0.159 b 

Non-Dominant             
Ribs 0.716 ± 0.102 a 0.714 ± 0.083 a  0.628 ± 0.064 a 0.693 ± 0.085 ab 0.730 ± 0.111 bc 0.740 ± 0.067 c  0.672 ± 0.057 a 0.702 ± 0.098 a 0.718 ± 0.104 a 0.736 ± 0.069 a 

Arm 0.769 ± 0.119 a 0.817 ± 0.128 b  0.685 ± 0.035 a 0.735 ± 0.075 a 0.823 ± 0.149 b 0.844 ± 0.115 b   0.700 ± 0.036 a 0.750 ± 0.103 a 0.808 ± 0.141 b 0.843 ± 0.112 c 

Leg 1.200 ± 0.214 a 1.251 ± 0.169 a  1.076 ± 0.061 a 1.180 ± 0.145 ab 1.268 ± 0.196 bc 1.254 ± 0.233 c  1.108 ± 0.077 a 1.199 ± 0.159 ab 1.225 ± 0.243 bc 1.283 ± 0.149 c 

             

Z-score 0.91 ± 1.11 a 1.07 ± 0.98 a  0.03 ± 0.83 a 0.67 ± 1.06 a 1.25 ± 0.90 b 1.25 ± 1.03 b  0.46 ± 0.55 a 0.77 ± 1.11 a 1.10 ± 0.97 a 1.22 ± 1.08 a 

T-score 0.68 ± 1.22 a 0.73 ± 1.32 a   -0.09 ± 0.91 a 0.34 ± 1.17 a 0.80 ± 1.32 ab 1.17 ± 1.20 b   0.29 ± 0.77 a 0.48 ± 1.20 a 0.70 ± 1.34 a 1.11 ± 1.27 a 

1Data are Mean ± Standard Deviation. Group significant differences are highlighted in bold. Labelled Adiposity, BMI and FMI pairwise means in a row without a common letter differ, P < 0.05. Non-296 
parametric tests are highlighted in grey shading. Abbreviations: EF, Excess Fat; FD, Fat Deficit; HA, High Adipose; NA, Normal Adipose; NW, Normal Weight; Ob, Obese; Ov, Overweight; U, Underweight 297 
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Habitual dietary intake 298 

Analysis of participants habitual diet revealed the entire sample to consume low amounts of 299 
trans fats (<2% daily total calories), with 98% of participants also consuming below the recommended 300 
daily maximum intake for saturated fat (<11% daily total calories). Nutrients that are positively 301 
associated with bone health revealed 90% of participants achieved the recommended daily intake of 302 
calcium (> mg day , % met the requirements for Zinc Male= .  mg/day  Female=  mg/day , 303 

% met the requirements for Magnesium Male= mg/day  Female= mg/day  and % met 304 
the requirements for Phosphorus mg . The incidence of adequate intake of other bone-impacting 305 
nutrients of note that participants achieved in their daily intake were vitamin C (94% participants), 306 
Vitamin E (84% participants), Vitamin K (14% participants), Vitamin B-12 (100% participants), 307 
Sodium (78% participants), Omega-3 fatty acids (32% participants), Omega-6 fatty acids (10% 308 
participants) and oligosaccharides (2% participants) (see supplementary Table 2 for both participants 309 
scoring and the criteria utilized . In other words, our sample’s diet was commendably good. 310 

Bivariate Correlations  311 

Table 3 displays the correlation coefficients between bone characteristics against age, PA scores, 312 
indices of body composition and nutritional intake of 50 middle-older aged adults.  Sport-based PA 313 
was revealed to be the most prolific predictor of bone structural characteristics with 8 out of 12 314 
significant positive associations, followed by BMI and total calorie intake with 7 out of 12 significant 315 
positive associations. Age and body fat% revealed negative associations with 6/12 and 4/12 significant 316 
negative associations respectively, and global PA with 3 positive associations. Finally, adiposity 317 
revealed 2 significant positive associations and surprisingly bone nutrient score revealed 2 significant 318 
negative associations (Table 3).  Surprisingly, independent analysis of macro and micronutrient 319 
intake between segmental BMD locations revealed significant associations including: (a) Positive 320 
associations between Vitamin A against Total BMD (r=0.329; P=0.020), Thoracic BMD (r=0.324; 321 
P=0.022), Lumbar BMD (r=0.301; P=0.034), Pelvis BMD (r=0.331; P=0.019), dominant ribs (r=0.329; 322 
P=0.020) and non-dominant ribs (r=0.418; P=0.002). (b) A negative association between relative 323 
protein intake vs. dominant arm BMD (r=-0.330; P=0.019) and non-dominant arm BMD (r=-0.359; 324 
P=0.011). Aligned with our hypothesis, there was a significant positive association between relative 325 
protein intake vs. non-dominant leg BMD (r=0.418; P=0.002). However a partial correlation 326 
controlling for BMI removed this association between relative protein intake vs. non-dominant leg 327 
BMD (r=-0.132; P=0.364). 328 

 329 
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Table 3. Bivariate correlations between habitual lifestyle factors against bone mineral density (BMD) characteristics in designated body locations in 50 43-80yr old adults. 330 

  
Physical Activity Score 

    
Nutrition 

BMD Location Age Work Sport Leisure Global Adiposity Body Fat % BMI FMI Daily Nutrition Score Bone Score Total Calorie Intake 

Total  -0.42** 0.10 0.35* -0.12 0.21 0.06 -0.33* 0.26 -0.46 -0.16 -0.28 0.40** 

Thoracic -0.20 0.10 0.23 -0.18 -0.03 0.25 0.06 0.38** 0.21 -0.08 -0.07 0.22 

Lumbar -0.24 -0.12 0.31* -0.17 0.01 -0.06 -0.24 0.04 -0.10 -0.04 -0.09 0.15 

Pelvis  -0.45** 0.09 0.40** 0.10 0.36* 0.17 -0.07 0.28* 0.10 -0.20 -0.27 0.19 

Dominant 
            

Rib  -0.24 0.14 0.37** -0.03 0.20 -0.05 -0.37** 0.13 -0.16 -0.04 -0.14 0.52*** 

Arm  -0.19 0.11 0.26 -0.06 0.17 0.31* -0.11 0.50*** 0.18 -0.17 -0.23 0.47** 

Leg  -0.28* 0.14 0.35* -0.09 0.25 0.18 -0.26 0.39** 0.06 -0.16 -0.21 0.48*** 

Non-Dominant             

Rib  -0.31* 0.23 0.34* -0.05 0.29* 0.07 -0.31* 0.32* -0.02 -0.08 -0.19 0.43** 

Arm  -0.21 0.09 0.21 -0.05 0.16 0.33* -0.08 0.53*** 0.21 -0.13 -0.24 0.44** 

Leg  -0.34* 0.24 0.34* -0.08 0.24 0.19 -0.28* 0.40** 0.06 -0.19 -0.25 0.48*** 

             

Z-score -0.11 0.02 0.24 0.07 0.18 -0.03 -0.18 0.06 -0.08 -0.24 -0.28* 0.07 

T-score -0.45** 0.05 0.37** 0.01 0.30* 0.08 -0.21 0.23 0.01 -0.19 -0.33* 0.21 

1Spearman rank order correlations highlighted in grey. Significant correlations are highlighted in bold (*P<0.05, ** P<0.01, *** P<0.001). Abbreviations: BMI, Body Mass Index; FMI, Fat Mass Index  331 

 332 

 333 
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Serum Cytokine Concentrations vs BMC and BMD 334 

There were no significant associations between IFNg, IL-8, IL- , TGF -  and TGF -2 against a 335 
series of bone characteristics (BMC, BMD, T-score and Z-score), and/or 30 nutrition variables. 336 
However, the remaining 9 cytokines and chemokines (G-CSF, TNF , IL , IL-6, MCP-1, MCP- , 337 
MIP , RANTES, TGF -3) showed statistically significant associations, all positive with the exception 338 
of RANTES and MCP-1 which were negatively associated (P<0.05) or trends (P<0.1) against BMC 339 
and/or BMD parameters (see Table 4). 340 
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Table 4. Spearman rank order correlations between serum cytokine concentrations in  participants against participants’ bone characteristics.  341 

  Correlation Coefficient (r) 

 Bone Mineral Density   Bone Mineral Content 

     Dominant Non-Dominant       Dominant Non-Dominant 

  Total Thoracic Lumbar Pelvis Rib Arm Leg Rib  Arm Leg 
T-

score 
Z-score Total Thoracic Lumbar Pelvis Rib Arm Leg Rib 

Arm 
Leg 

IL-1  0.25 0.16 0.10 0.13 0.05 0.15 0.25 0.22 0.16 0.29 0.26 0.36* 0.27 0.04 0.16 0.22 -0.24 0.31 0.33 0.11 0.25 0.32 

IL-6 0.22 0.20 -0.02 0.16 0.03 0.13 0.19 0.22 0.17 0.21 0.24 0.32 0.25 0.18 0.01 0.26 -0.15 0.27 0.24 0.12 0.26 0.24 

TNF  0.25 0.19 0.07 0.12 0.05 0.18 0.26 0.21 0.18 0.29 0.28 0.35* 0.32 0.14 0.17 0.22 -0.07 0.33 0.39* 0.09 0.27 0.39* 

G-CSF 0.27 0.05 0.04 0.19 0.26 0.07 0.12 0.21 0.10 0.20 0.31 0.29 0.22 0.26 0.17 0.23 0.13 0.11 0.26 0.18 0.08 0.26 

IFNg 0.04 -0.07 -0.09 -0.16 0.07 0.12 0.04 0.02 0.06 0.02 -0.04 0.00 0.00 -0.12 0.05 -0.17 -0.05 -0.01 0.07 0.02 0.00 0.06 

IL-10 0.13 0.16 0.00 0.11 0.02 0.09 0.13 0.20 0.11 0.13 0.16 0.26 0.20 0.15 -0.03 0.19 -0.21 0.22 0.17 0.06 0.18 0.14 

TGF -1 0.02 -0.31 -0.06 0.05 -0.05 -0.10 -0.12 -0.22 -0.06 -0.07 -0.04 -0.06 -0.22 -0.05 0.04 0.09 -0.08 -0.11 -0.14 -0.16 -0.05 -0.05 

TGF -2 0.05 -0.16 0.06 0.05 -0.16 0.02 -0.02 -0.20 0.03 0.00 -0.04 0.09 -0.17 -0.10 0.11 -0.01 0.02 0.01 -0.03 -0.19 0.09 0.04 

TGF -3 0.44* 0.45* 0.25 0.48** 0.235 0.55** 0.46* 0.27 0.55** 0.51** 0.36 0.27 0.334 0.50** 0.27 0.39* 0.60** 0.41* 0.41* 0.43* 0.41* 0.47* 

IL-8 0.08 0.11 -0.12 -0.04 -0.08 -0.03 0.07 0.03 0.07 0.12 0.04 0.17 0.03 0.05 -0.17 0.07 -0.16 0.09 0.09 0.10 0.10 0.13 

MCP-1 -0.13 -0.15 -0.26 -0.14 -0.29 0.00 -0.09 -0.35* 0.09 -0.08 -0.24 -0.18 -0.30 -0.03 -0.19 -0.01 -0.11 -0.13 -0.16 -0.17 -0.07 -0.07 

MIP-1  0.44* 0.20 0.16 0.30 0.39* 0.22 0.32 0.42* 0.29 0.38* 0.48** 0.47** 0.39* 0.24 0.21 0.43* 0.09 0.36* 0.43* 0.34 0.31 0.42* 

MIP-1  0.31 0.19 0.15 0.25 0.19 0.14 0.19 0.21 0.18 0.22 0.29 0.25 0.20 0.14 0.19 0.34 0.10 0.16 0.25 0.23 0.24 0.28 

RANTES -0.27 -0.30 -0.31 -0.22 -0.18 -0.18 -0.28 -0.39* -0.14 -0.26 -0.31 -0.40* -0.35* 0.02 -0.21 -0.18 0.10 -0.31 -0.30 -0.12 -0.24 -0.22 

 342 
1Significant correlations highlighted in black box (*P<0.05; ** P<0.01) and Trends (P<0.1) are highlighted in grey box. Abbreviations: G-CSF= Granulocyte-colony stimulating factor; IFNg= interferon gamma; 343 
IL= interleukin; MIP= macrophage inflammatory protein; MCP-1= monocyte chemoattractant protein; TGF= transforming growth factor; TNF= tumor necrosis factor; RANTES= regulated on activation, 344 
normal T cell expressed and secreted. 345 

 346 

 347 
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Z-Score comparisons of nutrition characteristics with study sample classified by Bone Health  348 

Figures 2A, 2B and 2C graphically summarizes the overall dietary habits, characteristics of 50 349 
participants and endocrine profile grouped by their general bone health utilizing their T-score to 350 
define osteopenia (T-score <-1.0) through the dimensionless variable Z-scores. Z-score differences 351 
between relative and absolute protein intake between bone health classifications differed, as 352 
illustrated by similar absolute intake between groups, yet greater relative intake for those classified 353 
within the normal T-score range. This is demonstrated by the percentage difference between Z-scores 354 
for absolute protein intake was only 0.4% between classification groups, thus interpreting this finding 355 
for both groups to be well matched. However, when expressing protein intake relative to body mass 356 
(g/kg) the percentage difference between Z-scores was 10.2% with normal range classified group 357 
having a lower relative protein intake. This pattern was continued for nutrients presumed beneficial 358 
to bone as demonstrated by calcium (-8.7%), phosphorus (-7.3%) and zinc (-10.5%), but differed for 359 
vitamin A (+23.3%), oligosaccharides (+20.2%), omega-6 fatty acid (+9.2%) intake between bone health 360 
classifications. Interestingly, individuals classified within the normal range had 9.4% higher Z-score 361 
for total calorie intake than those classified with osteopenia. The unit weighted Z-score for all 362 
nutrients classified from Figure 2A was calculated to be 0.118 (55%) for individuals scored within a 363 
normal range T-score and 0.578 (28%) for individuals classified as osteopenic. Therefore, the 364 
difference in percentage between the unit-weighted Z-scores equated to 26.5% between bone health 365 
classifications. 366 

In figure 2B, the pattern of Z-scores of participant characteristics revealed osteopenic 367 
participants to have a higher percentage difference for age (+20.1%), BMI (+8.3%) and body relative 368 
fat content (+17.3%), but lower lean mass (-22.5%), sport-based PA (-9.2%) and leisure-based PA (-369 
9.5%). The unit-weighted score for participant characteristics accounting for both positive and 370 
negative direction between osteopenic vs. normal range T-score adults was 60.2% lower in the 371 
osteopenic group.  372 

Finally in figure 2C, the pattern of Z-scores of participants’ endocrine profile revealed osteopenic 373 
participants to have a higher percentage difference for IL-  + . % , RANTES + . %  TGF -1 374 
+ . %  and TGF -2 (+15.0%), but lower IFNg (-13.4%), IL-6 (-8.5%), IL-10 (-5.9%), IL-  -7.5%), 375 

TNF  -15.1%), G-CSF (-23.5%), MIP-  -22.9%), MIP-  - . %  and TGF -3 (-17.7%). The unit-376 
weighted score for endocrine profile accounting for both positive and negative direction between 377 
osteopenic vs. normal range T-score adults was 57.2% lower in the healthy bone group. 378 

 379 
 380 
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 381 
Figure 2. Comparison of patterns of nutrient z-scores (A) associated with bone health [4] taken from participants’ 382 
habitual diet, participant characteristics (B) and endocrine levels (C) categorized by their T-score computed from 383 
reference data from the national health and nutrition examination database (Normal range vs. Osteopenia T- 384 
score <-1.0). 385 
 386 

Discussion 387 

The present study recognized key elements that influence BMD and potentially alleviate age-388 
related BMC and BMD loss. These included a varying combinations of optimizing total calorie intake, 389 
nutrient profile, sport-based PA body fat percentage, and BMI as we age. This was demonstrated by 390 
osteopenic participants having a higher body fat%, undertaking less moderate to vigorous activity, 391 
whilst taking in lower total daily calories and participants with a healthy bone profile habitually 392 
consuming more oligosaccharides, omega-6 fatty acids and surprisingly also, Vitamin A. The results 393 
thus support our first hypothesis and partially support our second. Interestingly, additional nutrients 394 
positively associated with bone health were not identified in individuals already within a healthy T-395 
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score range. However, our data should be contextualized in the fact that the greatest proportion of 396 
the study sample in fact habitually achieved the recommended intake for principal nutrients 397 
concerning bone health (calcium, zinc, magnesium and phosphorus). With regards to the third 398 
hypothesis when participants were grouped by body fat% and FMI classification, HA and Obese 399 
individuals were not found to be negatively affected/disadvantaged by high adiposity with regards 400 
to either BMC or BMC and in fact demonstrated higher BMC and BMD in their non-dominant arm, 401 
thus rejecting our third hypothesis. Interestingly, individuals with a high BMI appeared to exhibit a 402 
loading response as demonstrated by significantly greater BMC and BMD in both their dominant and 403 
non-dominant lower limbs. However, in conjunction with this finding, it is interesting that this effect 404 
should also be seen to occur in their upper limbs. This latter observation would suggest that the 405 
healthier bone in high BMI adults in this age group is not just through additional mechanical loading. 406 
We propose that another, equally significant modulator of the greater bone health in high BMI 407 
individuals, is the greater total calorie intake. Indeed a covariate analysis correcting for dietary 408 
quantity removed the significant difference in bone health between BMI classifications. It is important 409 
to note that a strength of the current study design is that the sample was well matched with regards 410 
to PA for all group comparisons including between body fat%, BMI, FMI and bone health, even 411 
gender grouping. Interestingly and in agreement with the current PA recommendations, we found 412 
that sport-based PA significantly positively correlated with the majority of bone sites (7 out of a 413 
possible 10 and T score). The latter, as expected, was true on both dominant and non-dominant lower 414 
limb bone sites, thus supporting our fourth hypothesis. No correlations were observed between either 415 
work or leisure-based PA, which may be due to the age of the sample utilized and their current work 416 
status with the majority of individuals either retired or in part time work. 417 

When analyzing the effect of nutrition on bone health in the current study, it was expected that 418 
particular nutrients already associated with good bone health would exhibit similar and positive 419 
correlations. Whilst, there were only two nutrients (including Vitamin A and relative protein intake) 420 
associated with BMD characteristics in bivariate correlation, others were highlighted as being 421 
important in the modulation of bone health through Z-score analyses including omega 6 fatty acids 422 
and oligosaccharides.  423 
In the case of Vitamin A, the current body of the literature suggests that there is a U-shaped 424 
association with fracture risk [45,46]. Given that within this study, we observed a series of positive 425 
correlations (n=6) between Vitamin A and a number of BMD sites, it would seem that our population 426 
in terms of diet was in the ascending limb of this U-shape relationship (<3000µg [47]). The mechanism 427 
suggested for the positive association of Vitamin A and fracture risk is via stimulation of osteoclast 428 
formation [48] and/or suppression of osteoblast activity [49], potentially through neutralizing the 429 
capability of vitamin D to maintain normal calcium levels [50]. The positive association between 430 
Vitamin A and bone health on the other hand is thought to be explained by vitamin A intake (Mean 431 
(SD): 1361 (1131µg)) and not exceeding either upper limits of >3000µg, where fracture risk increased 432 
by 48% when compared to individuals taking less than 1250µg [47], which was similar to our sample’s 433 
average intake. 434 

Another initially surprising negative correlation was that between relative protein intake BMD 435 
(dominant and non-dominant arm, and non-dominant leg). However, it is notable that following a 436 
partial correlation controlling for BMI this relationship was removed suggesting that differences may 437 
have been attributed to the strong association between BMI and BMD. Protein intake is reported to 438 
positively influence not only musculoskeletal health (increasing or maintaining muscle mass) but is 439 
noted to play a role in bone [51]. The recommended intake for adult is the same for optimum 440 
musculoskeletal health starting at 0.8g/kg body mass rising to 1.2-1.6g/kg body mass in elderly 441 
individuals [52]. The mean for the pooled study population was 1.17g/kg body mass with 96% of the 442 
pooled sample achieving the recommended target intake of 0.8g/kg body mass demonstrating the 443 
high quality diet observed in this study population habitual lifestyle. This healthy dietary pattern is 444 
continued throughout the selected nutrients analyzed and may partially explain the lack of 445 
associations between nutritional variables and either BMC or BMD characteristics. Interestingly, the 446 
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best predictors of bone characteristics within the study was both diet quantity and quality, suggesting 447 
that adequate food consumption and quality is needed to ensure bone maintenance or growth can be 448 
achieved either through diet alone or in conjunction with structured PA. It should be noted that 449 
excess calorie intake above one’s metabolic demand may increase adipose tissue content and increase 450 
obesity risk.  451 

The literature shows that obesity and bone health are negatively correlated, potentially through 452 
pro-inflammatory cytokines influencing the promotion of osteoclast activity [53] and bone resorption 453 
[7], thus negativity impacting bone characteristics. The pro-inflammatory cytokines IL- , IL-6, and 454 
TNF-  are important regulators of bone resorption and may play an important role in age-related 455 
bone loss [54]. Similarly, the TGF family plays a key role in bone homeostasis whereby therapies 456 
using these proteins seem to positively affect bone healing. Interestingly however, chronic 457 
inflammation (as normally expected in ageing and/or obesity), is associated with augmented levels 458 
of TGF- , and subsequently reduced bone mineral content and/or disturbed bone healing [55]. 459 
Overexpression of G-CSF (as seen in obesity for instance) induces severe osteopenia [56]. In parallel 460 
IFNg stimulates osteoclast formation and hence bone loss via antigen driven T-cell activation [57]. As 461 
for the anti-inflammatory cytokine IL-10, it deficiency is associated with osteopenia, decreased bone 462 
formation, and mechanical fragility of bones [58]. On the other hand, high levels of IL-8 are associated 463 
with bone mineral accrual [59]. MCP-1 is thought to have beneficial effects on bone via stimulating 464 
the parathyroid hormone [60]. The MIP family has been associated with an acceleration of osteogenic 465 
differentiation and mineralization [61]. Last but not least, RANTES overexpression is associated with 466 
osteogenic differentiation [62]. Surprisingly though this was not observed within this study, as we 467 
noted positive associations (either correlation or trend) between 4 pro-inflammatory cytokines and 3 468 
chemokines against both BMD and BMC site locations (see Table 4). We would argue that our data 469 
demonstrate that, given the positive relationship between impact based sport/exercise and bone 470 
health [63], the deleterious effects of concurrent high cytokines TNF , IL- , G-CSF, IL-6) and 471 
chemokines (MCP-1, MIP- , MIP-  was outweighed by the impact of a higher BMI adding much 472 
needed loading to the skeletal structure [64]. Whilst within our study adiposity appeared positively 473 
associated with both dominant and non-dominant arm BMD, it is noteworthy that ~63% of the 474 
osteopenic participants were also high adipose. Therefore, whilst no negative association existed 475 
within this study, high levels of adiposity may instigate a poorer bone health, which may worsen 476 
with duration of exposure to obesity (number of years) and suboptimal diet i.e. relatively low in bone 477 
health nutrients (see Figure 2A). However, in view of our findings and limitation of our study, it is 478 
noted that blood samples were taken on a single occasion and were not taken over a course of a few 479 
months to confirm the average pro-inflammatory levels of each participant. Thus, future 480 
investigations should analyze the levels of vitamin and minerals within the blood alongside 481 
nutritional intake to examine the interactive of any potential nutrient deficiencies have upon bone 482 
health and osteoporosis risk.  483 

Finally, it is already widely accepted that PA is a preventative therapy for a number of 484 
deleterious ageing-related changes such as low skeletal muscle mass and strength [65], decreased 485 
physical function [66], and/or decreasing bone health [30,31]. Our data confirm these findings with 486 
regards to bone health, as noted by both classification of training status of participants and structured 487 
sport-based PA shown to correlate with 8/12 bone health variables. Also noteworthy, the largest 488 
impact of sport-based PA was in the loaded bones sites (both dominant and non-dominant legs and 489 
pelvis). With the benefits of PA reported to decrease the risk of hip fractures approximately by 20-490 
40% [67-69] when compared to sedentary inactive individuals, our findings lend further support of 491 
the association between increased PA and better BMD in vulnerable bone sites such as the hip and 492 
pelvis. Our study also demonstrates the importance of structured intense sport-based PA sessions in 493 
comparison to increasing either work or leisure-based PA as a tool to limit the risk of developing 494 
osteopenia or ultimately osteoporosis, with ageing. Ultimately also, our data suggest that extra 495 
calorie burning when performing sport based PA in those with a higher BMI may be partly 496 



Nutrients 2019, 11 FOR PEER REVIEW  5 

 

responsible for the increased bone mineral density and counterintuitively, a relatively higher level of 497 
pro-inflammatory cytokine levels (due to the prolonged sport based PA). 498 

 499 
 500 
Conclusion 501 
 502 

This study revealed total calorie intake, sport-based PA, BMI, adiposity, endocrine profile and 503 
age to be significant predictors of BMD characteristics in middle to older aged adults, with the main 504 
modifiable risk factor of developing osteoporosis being high body fat%. Analysis of nutritional 505 
profiles characterized by participants’ bone health normal vs osteopenia , revealed a pattern of 506 
positively associated nutrients related to bone health (omega-6 fatty acids, vitamin A and 507 
oligosaccharides) within the normal range group. Thus, application of this data suggests both diet 508 
quantity and quality, supplemented with structured sport-based PA at a sufficient intensity for the 509 
intended age group is associated with a healthy bone profile in later life. Future research should 510 
investigate how varying forms of PA impacts on bone health to provide more prescriptive guidelines 511 
dependent on either age classification or existing bone health status. 512 

 513 
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 515 
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Appendix A 525 

Supplementary Table 1. Participants’ anthropometric, nutritional, physical activity PA  and endocrine 526 
characteristics. 527 

Characteristics  Nutritional Intake  PA Scores  Endocrine Profile   

Age (yrs) 64 ± 9 Daily Calorie intake (kcal/d) 1992 ± 389 Work 2.59 ± 0.39 Pro-Inflammatory  

Height (cm) 165 ± 7 Carbohydrate intake (g) 230 ± 56 Sport 2.33 ± 0.55 IL-  pg/ml  2.91 ± 2.64 

Body Mass (kg) 75 ± 16 Protein intake (g) 86 ±  20 leisure 2.82 ± 0.50 IL-6 (pg/ml) 11.5 ± 46.3 

BMI (kg/m²) 27.7 ± 5.4 Fat intake (g) 72 ± 18 Global 7.73 ± 0.83 TNF  pg/ml  11.0 ± 13.5 

Fat Mass (kg) 28.0 ± 9.5 Metabolic Balance (kcal/d) -26 ± 321   G-CSF (pg/ml) 99.0 ± 157 

Body Fat (%) 37.7 ± 7.7 Relative Protein (g/kg) 1.17 ± 0.29   IFNg (pg/ml) 35.2 ± 117 

Lean Mass (kg) 42.8 ± 9.2 Omega 3 Fatty Acid (g) 1.40 ± 1.49   Anti-Inflammatory  

  Omega 6 Fatty Acid (g) 5.94 ± 3.39   IL-10 (pg/ml) 18.4 ± 53.9 

  Vitamin A (µg) 1361 ± 1131   TGF -1 (pg/ml) 32267 ± 38860 

  Vitamin D (µg) 5.35 ± 7.72   TGF -2 (pg/ml) 296 ± 220 

  Calcium (mg) 1019 ± 304   TGF -3 (pg/ml) 221 ± 285 

  Zinc (mg) 10.1 ± 2.7   Chemokines  

  Vitamin C (mg) 115 ± 65   IL-8 (pg/ml) 41.4 ± 23.2 
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  Magnesium (mg) 356 ± 90   MCP-1 (pg/ml) 76.7 ± 99.4 

  Phosphorus (mg) 1526 ± 353   MIP-  pg/ml  9.16 ± 7.6 

  Vitamin K (µg) 58.9 ± 78.1   MIP-  pg/ml  513 ±  650 

  Oligosaccharide (g) 0.86 ± 1.54   RANTES (pg/ml) 86869 ± 47873 

1Data are Mean ± Standard Deviation. 528 
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Supplementary Table 2. Participant scoring and criteria utilized for participants’ habitual daily nutritional intake 529 
and nutrients positively associated with bone health.  530 

 Scoring Criteria 

Daily Nutrition  Points Participants  Points Participants  Points Participants 

Protein Intake   .  g/day 2 25/50 0.8-1.19 g/day 1 23/50 <0.8 g/day 0 2/50 

Carbohydrate 

Intake 
Within 45-65% DI 2 28/50 

Below/Above 45-65% 

DI 
0 22/50    

Metabolic Score  10% within CDI 2 20/50 ±10-20% outside CDI 0 20/50 
>±20% 

outside CDI 
-1 10/50 

Fat  Within +5% of 35% DI 2 31/50 Outside ±5% of 35% DI 1 19/50    

Saturated Fat <11% of  DI 1 49/50 % of DI -2 1/50    

Trans Fat <2% of DI 1 50/50 % of DI -2 0/50    

Polyunsaturated 

Fat 

Within ±10% 19-64yrs 

M=18g F=14g  
1 9/50 Outside ±10-20%  -1 11/50 > ±20%  -2 30/50 

 65+yrs M=17g F=14g         

Monounsaturated 

Fat 

Within ±10% 19-64yrs 

M=36g F=29g 
1 8/50 Outside ±10-20% -1 12/50 > ±20%  -2 30/50 

 65+yrs M=34g F=28g   65+yrs M=34g F=28g      

Free Sugars 
19-64yrs M=<33g 

F=<27g 
1 12/50 

19-64yrs M=>33g 

F=>27g 
-1 38/50    

 65+yrs M=<31g F=<26g   65+yrs M=>31g F=>26g      

Omega-3 Fatty 

Acid 
 .  g/day 2 16/50 <1.6 g/day 0 34/50    

Omega-6 Fatty 

Acid 
  g/day 2 5/50 <10 g/day 0 45/50    

Vitamin A 
Within 700µg/day-

3000µg/day 
1 37/50 

<700µg/day - 

>3000µg/day 
 13/50    

Vitamin D  µg/day 2 4/50 <10 µg/day 0 46/50    

Vitamin E >3 mg/day 1 50/50 <3 mg/day 0 50/50    

Vitamin C  µg/day 1 47/50 <40 µg/day 0 3/50    

Vitamin B-12  .  µg/day 1 50/50 <1.5 µg/day 0 50/50    

Fibre   g/day 1 4/50 <30 g/day 0 46/50    

Calcium   mg/day 1 45/50 <700 mg/day 0 5/50    

Zinc 
M =  .  mg/day F =  

 mg/day 
1 42/50 

M = <9.5 mg/day F = <7 

mg/day 
0 8/50    

Iron  .  mg/day 1 45/50 <8.7 mg/day 0 5/50    

Sodium <2.4 g/day 1 39/50  .  g/day 0 11/50    

Magnesium 
M = mg/day F=  

mg/day 
1 40/50 

M = <300mg/day F= 

<270mg/day 
0 10/50    

Vitamin K >109 µg/day 1 7/50 <109 µg/day 0 43/50    

Phosphorus mg 1 50/50 <550mg 0 0/50    

Copper . mg/day 1 36/50 <1.2mg/day 0 14/50    

Oligosaccharide g/day 1 1/50 <8g/day 0 49/50    

          

Bone Scoring          

Calcium   mg/day 1 45/50 <700 mg/day 0 5/50    

Vitamin D  µg/day 2 4/50 <10 µg/day 0 46/50    

Vitamin C  µg/day 1 47/50 <40 µg/day 0 3/50    

Protein Intake  .  g/day 2 25/50 0.8-1.19 g/day 1 23/50 <0.8 g/day 0 2/50 

Omega-3 Fatty 

Acid 
.  g/day 2 16/50 <1.6 g/day 0 34/50    

Vitamin K  µg/day 1 7/50 <109 µg/day 0 43/50    

Oligosaccharide g/day 1 1/50 <8g/day 0 49/50    

Zinc 
M =  .  mg/day F =  

 mg/day 
1 42/50 

M = <9.5 mg/day F = <7 

mg/day 
0 8/50    

Magnesium 
M = mg/day F=  

mg/day 
1 40/50 

M = <300mg/day F= 

<270mg/day 
0 10/50    

Phosphorus mg 1 50/50 <550mg 0 0/50       

1Dietary reference values are composed from both UK and US guidelines [40,41,70]. Abbreviations: CDI, corrected daily intake; 531 
DI, daily intake; F, female; M, male532 
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Supplementary Table 3. Bone mineral content (BMC) and bone mineral density (BMD) characteristics in 50 randomly selected untrained 43-80 yrs old adults categorized by body fat%, body mass 533 
index (BMI) and fat mass index (FMI) classifications. 534 

 Body Fat% Main Effect Body Mass Index Main Effect FMI Main Effect 

  NA (n=18) HA/Ob (n=32) P NW (n=15) Ov (n=19) Ob (n=16) P FD (n=2) NW  (n=12) EF (n=23) Ob (n=13) P 

BMC (g)        
    

 

Total   2258 ± 450 a  2367 ± 405 a 0.385 2151 ± 433 a 2294 ± 370 ab 2532 ± 401 b 0.023 2364 ± 710 a 2185 ± 509 a 2308 ± 339 a 2488 ± 426 a 0.226 

Thoracic 111 ± 23 a 136 ± 33 b 0.006 111 ± 23 a 129 ± 37 ab 139 ± 27 b 0.026 102 ± 29 a 115 ± 42 a 128 ± 24 a 138 ± 29 a 0.051 

Lumbar  66 ± 16 a 66 ± 20 a 0.911 65 ± 21 a 65 ± 18 a 69 ± 18 a 0.800 72 ± 40 a 63 ± 11 a 67 ± 21 a 67 ± 19 a 0.972 

Pelvis  238 ± 78 a 224 ± 63 a 0.762 222 ± 75 216 ± 65 a 250 ± 64 a 0.171 259 ± 171 a 225 ± 70 a 220 ± 62 a 243 ± 68 a 0.796 

Dominant        
    

 
Ribs 86 ± 25 a 107 ± 25 b 0.007 76 ± 16 a 100 ± 20 b 121 ± 23 c <0.001 81 ± 17 ab 79 ± 19 b 100 ± 21 b 121 ± 25 a <0.001 

Arm 162 ± 50 a 175 ± 41 a 0.146 151 ± 43 a 174 ± 43 a 185 ± 44 a 0.034 137 ± 26 a 154 ± 52 a 177 ± 41 a 179 ± 42 a 0.081 

Leg 418 ± 90 a 452 ± 96 a 0.225 390 ± 82 a 448 ± 103 a 477 ± 83 b 0.033 435 ± 94 a 398 ± 110 a 447 ± 91 a 468 ± 88 a 0.151 

Non-

Dominant             
Ribs 87 ± 22 a 98 ± 28 a 0.139 79 ± 18 a 98 ± 24 b 104 ± 30 b 0.004 79 ± 24 a 81 ± 20 a 99 ± 24 a 101 ± 32 a 0.044 

Arm 152 ± 48 a 177 ± 50 b 0.036 137 ± 37 a 175 ± 53 b 189 ± 47 b 0.002 128 ± 29 ab 142 ± 47 b 174 ± 48 ab 188 ± 49 a 0.011 

Leg 416 ± 129 a 437 ± 96 a 0.196 375 ± 92 a 439 ± 123 a 470 ± 85 b 0.009 433 ± 125 a 382 ± 118 a 435 ± 109 a 464 ± 90 a 0.058 

BMD (g/cm²)             
Total   1.168 ± 0.12 a 1.166 ± 0.13 a 0.958 1.125  ± 0.11 a 1.165 ± 0.14 a 1.208 ± 0.12 a 0.198 1.165 ± 0.134 a 1.150 ± 0.138 a 1.161 ± 0.129 a 1.192 ± 0.126 a 0.870 

Thoracic 1.007 ± 0.11 a 1.090 ± 0.18 a 0.093 1.009 ± 0.13 a 1.034 ± 0.16 a 1.141 ± 0.16 a 0.045 0.970 ± 0.052 a 1.032 ± 0.138 a 1.036 ± 0.168 a 1.145 ± 0.158 a 0.207 

Lumbar  1.117 ± 0.17 a 1.131 ± 0.22 a 0.812 1.144 ± 0.19 a 1.100 ± 0.23 a 1.140 ± 0.20 a 0.564 1.152 ± 0.281 a 1.150 ± 0.147 a 1.105 ± 0.239 a 1.135 ± 0.198 a 0.933 

Pelvis  1.189 (0.18) a 1.203 ± 0.18 a 0.792 1.129 ± 0.17 a 1.199 ± 0.16 a 1.262 ± 0.19 a 0.115 1.058 ± 0.249 a 1.198 ± 0.158 a 1.182 ± 0.171 a 1.249 ± 0.205 a 0.541 

Dominant        
    

 
Ribs 0.693 ± 0.09 a 0.689 ± 0.11 a 0.613 0.662 ± 0.08 a 0.700 ± 0.14 a 0.706 ± 0.09 a 0.383 0.704 ± 0.069 a 0.682 ± 0.098 a 0.696 ± 0.131 a 0.686 ± 0.074 a 0.917 

Arm 0.778 ± 0.15 a 0.840 ± 0.14 a 0.066 0.734 ± 0.10 a 0.818 ± 0.16 ab 0.884 ± 0.15 b 0.009 0.678 ± 0.038 a 0.765 ± 0.169 a 0.824 ± 0.143 a 0.864 ± 0.139 a 0.036 

Leg 1.165 ± 0.15 a 1.209 ± 0.14 a 0.310 1.122 ± 0.14 a 1.195 ± 0.14 ab 1.257± 0.13 b 0.024 1.137 ± 0.054 a 1.144 ± 0.179 a 1.192 ± 0.132 a 1.248 ± 0.144 a 0.337 

Non-

Dominant             
Ribs 0.690 ± 0.08 a 0.699 ± 0.08 a 0.700 0.664 ± 0.08 a 0.692 ± 0.08 a 0.728 ± 0.07 a 0.067 0.703 ± 0.064 a 0.681 ± 0.096 a 0.694 ± 0.077 a 0.710 ± 0.066 a 0.827 

Arm 0.759 ± 0.15 a 0.825 ± 0.14 b 0.041 0.709 ± 0.08 a 0.822 ± 0.17 b 0.864 ± 0.13 b 0.004 0.674 ± 0.059 a 0.733 ± 0.138 a 0.821 ± 0.156 a 0.850 ± 0.118 a 0.023 

Leg 1.166 ± 0.19 a 1.199 ± 0.15 a 0.495 1.108 ± 0.15 a 1.186 ± 0.17 ab 1.261 ± 0.13 b 0.027 1.126 ± 0.101 a 1.128 ± 0.182 a 1.186 ± 0.160 a 1.251 ± 0.142 a 0.133 

             

Z-score 1.144 ± 1.08 a 0.922 ± 0.92 a 0.450 0.827 ± 1.19 a 1.000 ± 0.75 a 1.169 ± 1.06 a 0.638 1.00 ± 0.57 a 1.14 ± 1.33 a 0.89 ± 0.77 a 1.07 ± 1.11 a 0.905 

T-score 0.478 ± 1.21 a 0.334 ± 1.37 a 0.713 -0.033 ± 1.18 a 0.300 ± 1.21 a 0.881 ± 1.44 a 0.140 0.70 ± 1.56 a 0.26 ± 1.27 a 0.24 ± 1.22 a 0.72 ± 1.53 a 0.730 
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Data are Mean ± Standard Deviation. Group significant differences are highlighted in bold. Labelled Adiposity, BMI and FMI pairwise means in a row without a common letter differ, P < 0.05. Non-parametric tests are 535 
highlighted in grey shading. Abbreviations: EF, Excess Fat; FD, Fat Deficit; HA, High Adipose; NA, Normal Adipose; NW, Normal Weight; Ob, Obese; Ov, Overweight; U, Underweight536 
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