568 research outputs found

    Whitebark Pine Stand Condition, Tree Abundance, and Cone Production as Predictors of Visitation by Clark's Nutcracker

    Get PDF
    Accurately quantifying key interactions between species is important for developing effective recovery strategies for threatened and endangered species. Whitebark pine (Pinus albicaulis), a candidate species for listing under the Endangered Species Act, depends on Clark's nutcracker (Nucifraga columbiana) for seed dispersal. As whitebark pine succumbs to exotic disease and mountain pine beetles (Dendroctonus ponderosae), cone production declines, and nutcrackers visit stands less frequently, reducing the probability of seed dispersal.We quantified whitebark pine forest structure, health metrics, and the frequency of nutcracker occurrence in national parks within the Northern and Central Rocky Mountains in 2008 and 2009. Forest health characteristics varied between the two regions, with the northern region in overall poorer health. Using these data, we show that a previously published model consistently under-predicts the proportion of survey hours resulting in nutcracker observations at all cone density levels. We present a new statistical model of the relationship between whitebark pine cone production and the probability of Clark's nutcracker occurrence based on combining data from this study and the previous study.Our model clarified earlier findings and suggested a lower cone production threshold value for predicting likely visitation by nutcrackers: Although nutcrackers do visit whitebark pine stands with few cones, the probability of visitation increases with increased cone production. We use information theoretics to show that beta regression is a more appropriate statistical framework for modeling the relationship between cone density and proportion of survey time resulting in nutcracker observations. We illustrate how resource managers may apply this model in the process of prioritizing areas for whitebark pine restoration

    Diagnostic Classifications and Resource Utilization of Decedents Served by the Department of Veterans Affairs

    Get PDF
    Background: Given the volume and cost of inpatient care during the last year of life, there is a critical need to identify patterns of dying as a means of planning end-of-life care services, especially for the growing number of older persons who receive services from the Veterans Health Administration (VHA). Methods: A retrospective computerized record review was conducted of 20,933 VHA patients who died as inpatients between October 1, 2001 and September 30, 2002. Diagnoses were aggregated into one of five classification patterns of death and analyzed in terms of health care resource utilization (mean number of inpatient days and cumulative outpatient visits in the year preceding the patient's death). Results: Cancer deaths were the most common (30.4%) followed by end-stage renal disease (ESRD) (23.2%), cardiopulmonary failure (21.4%), frailty (11.6%), “other” diagnoses (7.3%), and sudden deaths (6.1%). Those with ESRD were more likely to be male and nonwhite (p < 0.05) and those with frailty were more likely to be older and married (p < 0.05). Controlling for demographic variables, those with frailty had the highest number of inpatient days while those with ESRD had the highest number of outpatient visits. Nonmarried status was associated with more inpatient days, especially among younger decedents. Conclusion: As a recognized leader in end-of-life care, the VHA can play a unique role in the development of specific interventions that address the diverse needs of persons with different dying trajectories identified through this research.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63159/1/jpm.2006.0256.pd

    Molecular Valves for Controlling Gas Phase Transport Made from Discrete Angstrom-Sized Pores in Graphene

    Full text link
    An ability to precisely regulate the quantity and location of molecular flux is of value in applications such as nanoscale 3D printing, catalysis, and sensor design. Barrier materials containing pores with molecular dimensions have previously been used to manipulate molecular compositions in the gas phase, but have so far been unable to offer controlled gas transport through individual pores. Here, we show that gas flux through discrete angstrom-sized pores in monolayer graphene can be detected and then controlled using nanometer-sized gold clusters, which are formed on the surface of the graphene and can migrate and partially block a pore. In samples without gold clusters, we observe stochastic switching of the magnitude of the gas permeance, which we attribute to molecular rearrangements of the pore. Our molecular valves could be used, for example, to develop unique approaches to molecular synthesis that are based on the controllable switching of a molecular gas flux, reminiscent of ion channels in biological cell membranes and solid state nanopores.Comment: to appear in Nature Nanotechnolog

    Relationships among Polycyclic Aromatic Hydrocarbon–DNA Adducts, Proximity to the World Trade Center, and Effects on Fetal Growth

    Get PDF
    Polycyclic aromatic hydrocarbons (PAHs) are toxic pollutants released by the World Trade Center (WTC) fires and various urban combustion sources. Benzo[a]pyrene (BaP) is a representative member of the class of PAHs. PAH–DNA adducts, or BaP–DNA adducts as their proxy, provide a measure of chemical-specific genetic damage that has been associated with increased risk of adverse birth outcomes and cancer. To learn whether PAHs from the WTC disaster increased levels of genetic damage in pregnant women and their newborns, we analyzed BaP–DNA adducts in maternal (n = 170) and umbilical cord blood (n = 203) obtained at delivery from nonsmoking women who were pregnant on 11 September 2001 and were enrolled at delivery at three downtown Manhattan hospitals. The mean adduct levels in cord and maternal blood were highest among newborns and mothers who resided within 1 mi of the WTC site during the month after 11 September, intermediate among those who worked but did not live within this area, and lowest in those who neither worked nor lived within 1 mi (reference group). Among newborns of mothers living within 1 mi of the WTC site during this period, levels of cord blood adducts were inversely correlated with linear distance from the WTC site (p = 0.02). To learn whether PAHs from the WTC disaster may have affected birth outcomes, we analyzed the relationship between these outcomes and DNA adducts in umbilical cord blood, excluding preterm births to reduce variability. There were no independent fetal growth effects of either PAH–DNA adducts or environmental tobacco smoke (ETS), but adducts in combination with in utero exposure to ETS were associated with decreased fetal growth. Specifically, a doubling of adducts among ETS-exposed subjects corresponded to an estimated average 276-g (8%) reduction in birth weight (p = 0.03) and a 1.3-cm (3%) reduction in head circumference (p = 0.04). The findings suggest that exposure to elevated levels of PAHs, indicated by PAH–DNA adducts in cord blood, may have contributed to reduced fetal growth in women exposed to the WTC event

    Differences between urban and rural hedges in England revealed by a citizen science project

    Get PDF
    Background: Hedges are oth ecologically and culturally important and are a distinctive feature of the British landscape. However the overall length of hedges across Great Britain is decreasing. Current challenges in studying hedges relate to the dominance of research on rural, as opposed to urban, hedges, and their variability and geographical breadth. To help address these challenges and to educate the public on the importance of hedge habitats for wildlife, in 2010 the Open Air Laboratories (OPAL) programme coordinated a hedge-focused citizen science survey. Results: Results from 2891 surveys were analysed. Woody plant species differed significantly between urban and rural areas. Beech, Holly, Ivy, Laurel, Privet and Yew were more commonly recorded in urban hedges whereas Blackthorn, Bramble, Dog Rose, Elder and Hawthorn were recorded more often in rural hedges. Urban and rural differences were shown for some groups of invertebrates. Ants, earwigs and shieldbugs were recorded more frequently in urban hedges whereas blowflies, caterpillars, harvestmen, other beetles, spiders and weevils were recorded more frequently in rural hedges. Spiders were the most frequently recorded invertebrate across all surveys. The presence of hard surfaces adjacent to the hedge was influential on hedge structure, number and diversity of plant species, amount of food available for wildlife and invertebrate number and diversity. In urban hedges with one adjacent hard surface, the food available for wildlife was significantly reduced and in rural hedges, one adjacent hard surface affected the diversity of invertebrates. Conclusions: This research highlights that urban hedges may be important habitats for wildlife and that hard surfaces may have an impact on both the number and diversity of plant species and the number and diversity of invertebrates. This study demonstrates that citizen science programmes that focus on hedge surveillance can work and have the added benefit of educating the public on the importance of hedgerow habitats

    Single-Molecule Three-Color FRET with Both Negligible Spectral Overlap and Long Observation Time

    Get PDF
    Full understanding of complex biological interactions frequently requires multi-color detection capability in doing single-molecule fluorescence resonance energy transfer (FRET) experiments. Existing single-molecule three-color FRET techniques, however, suffer from severe photobleaching of Alexa 488, or its alternative dyes, and have been limitedly used for kinetics studies. In this work, we developed a single-molecule three-color FRET technique based on the Cy3-Cy5-Cy7 dye trio, thus providing enhanced observation time and improved data quality. Because the absorption spectra of three fluorophores are well separated, real-time monitoring of three FRET efficiencies was possible by incorporating the alternating laser excitation (ALEX) technique both in confocal microscopy and in total-internal-reflection fluorescence (TIRF) microscopy

    Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity

    Get PDF
    Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
    corecore