14 research outputs found

    Polyamine metabolism is involved in adipogenesis of 3T3-L1 cells

    Get PDF
    Polyamines spermidine and spermine are known to be required for mammalian cell proliferation and for embryonic development. Alpha-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase (ODC) a limiting enzyme of polyamine biosynthesis, depleted the cellular polyamines and prevented triglyceride accumulation and differentiation in 3T3-L1 cells. In this study, to explore the function of polyamines in adipogenesis, we examined the effect of polyamine biosynthesis inhibitors on adipocyte differentiation and lipid accumulation of 3T3-L1 cells. The spermidine synthase inhibitor trans-4-methylcyclohexylamine (MCHA) increased spermine/spermidine ratios, whereas the spermine synthase inhibitor N-(3-aminopropyl)-cyclohexylamine (APCHA) decreased the ratios in the cells. MCHA was found to decrease lipid accumulation and GPDH activity during differentiation, while APCHA increased lipid accumulation and GPDH activity indicating the enhancement of differentiation. The polyamine-acetylating enzyme, spermidine/spermine N1-acetyltransferase (SSAT) activity was increased within a few hours after stimulus for differentiation, and was found to be elevated by APCHA. In mature adipocytes APCHA decreased lipid accumulation while MCHA had the opposite effect. An acetylpolyamine oxidase and spermine oxidase inhibitor MDL72527 or an antioxidant N-acetylcysteine prevented the promoting effect of APCHA on adipogenesis. These results suggest that not only spermine/spermidine ratios but also polyamine catabolic enzyme activity may contribute to adipogenesis

    Projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse

    No full text
    The mouse precuneiform nucleus has been proposed as the midbrain locomotion center, a function ascribed to its caudal neighbor, cuneiform nucleus, in the rat, cat and other species. The present study investigated the projections from the central amygdaloid nucleus to the precuneiform nucleus in the mouse using retrograde tracer injections (fluoro-gold) into the precuneiform nucleus and anterograde tracer injections (biotinylated dextran amine) into the central amygdaloid nucleus. The entire central amygdaloid nucleus except the rostral pole had retrogradely labeled neurons, especially in the middle portion where labeled neurons were densely packed. Anterogradely labeled amygdaloid fibers approached the precuneiform nucleus from the area ventrolateral to it and terminated in the entire precuneiform nucleus. Labeled fibers were also found in laminae 5 and 6 in the upper cervical cord on the ipsilateral side. The present study is the first demonstration of projections from the central amygdaloid nucleus to the precuneiform nucleus. This projection may underpin the role of the precuneiform nucleus in the modulation of the cardiovascular activity

    Nicotinamide N-methyltransferase knockdown protects against diet-induced obesity

    No full text
    In obesity and type 2 diabetes, Glut4 glucose transporter expression is decreased selectively in adipocytes(1). Adipose-specific knockout or overexpression of Glut4 alters systemic insulin sensitivity(2). Here we show, using DNA array analyses, that nicotinamide N-methyltransferase (Nnmt) is the most strongly reciprocally regulated gene when comparing gene expression in white adipose tissue (WAT) from adipose-specific Glut4-knockout or adipose-specific Glut4-overexpressing mice with their respective controls. NNMT methylates nicotinamide (vitamin B3) using S-adenosylmethionine (SAM) as a methyl donor(3,4). Nicotinamide is a precursor of NAD(+), an important cofactor linking cellular redox states with energy metabolism(5). SAM provides propylamine for polyamine biosynthesis and donates a methyl group for histone methylation(6). Polyamine flux including synthesis, catabolism and excretion, is controlled by the rate-limiting enzymes ornithine decarboxylase (ODC) and spermidine–spermine N(1)-acetyltransferase (SSAT; encoded by Sat1) and by polyamine oxidase (PAO), and has a major role in energy metabolism(7,8). We report that NNMT expression is increased in WAT and liver of obese and diabetic mice. Nnmt knockdown in WAT and liver protects against diet-induced obesity by augmenting cellular energy expenditure. NNMT inhibition increases adipose SAM and NAD(+) levels and upregulates ODC and SSAT activity as well as expression, owing to the effects of NNMT on histone H3 lysine 4 methylation in adipose tissue. Direct evidence for increased polyamine flux resulting from NNMT inhibition includes elevated urinary excretion and adipocyte secretion of diacetylspermine, a product of polyamine metabolism. NNMT inhibition in adipocytes increases oxygen consumption in an ODC-, SSAT- and PAO-dependent manner. Thus, NNMT is a novel regulator of histone methylation, polyamine flux and NAD(+)-dependent SIRT1 signalling, and is a unique and attractive target for treating obesity and type 2 diabetes

    Early Radiation of Biomineralizing Phyla

    No full text

    Microstructure of Common Reef-Building Coral Genera Acropora, Pocillopora, Goniastrea and Porites : Constraints on Spatial Resolution in Geochemical Sampling

    No full text
    Scleractinian corals are increasingly used as recorders of modern and paleoclimates. The microstructure of four common reef-building coral genera is documented here: Acropora, Pocillopora, Goniastrea, and Porites. This study highlights the complexity and spatial variability of skeletal growth in different coral genera and suggests that a single growth model is too generalized to allow the accurate depiction of the variability observed in the four genera studied. New models must be introduced in order for coral skeletogenesis to be understood adequately to allow coral skeletons to serve as repositories of temporally constrained geochemical data. Owing to differences in microstructural patterns in different genera, direct observation of microstructural elements and growth lines may be necessary to allow microsamples to be placed into series that represent temporal sequences with known degrees of time averaging. Such data are critical for constraining microsampling strategies aimed at developing true time series geochemical data at very fine spatial and temporal scales
    corecore