167 research outputs found
Scheduling Bidirectional Traffic on a Path
We study the fundamental problem of scheduling bidirectional traffic along a
path composed of multiple segments. The main feature of the problem is that
jobs traveling in the same direction can be scheduled in quick succession on a
segment, while jobs in opposing directions cannot cross a segment at the same
time. We show that this tradeoff makes the problem significantly harder than
the related flow shop problem, by proving that it is NP-hard even for identical
jobs. We complement this result with a PTAS for a single segment and
non-identical jobs. If we allow some pairs of jobs traveling in different
directions to cross a segment concurrently, the problem becomes APX-hard even
on a single segment and with identical jobs. We give polynomial algorithms for
the setting with restricted compatibilities between jobs on a single and any
constant number of segments, respectively
Genetic Algorithm with Optimal Recombination for the Asymmetric Travelling Salesman Problem
We propose a new genetic algorithm with optimal recombination for the
asymmetric instances of travelling salesman problem. The algorithm incorporates
several new features that contribute to its effectiveness: (i) Optimal
recombination problem is solved within crossover operator. (ii) A new mutation
operator performs a random jump within 3-opt or 4-opt neighborhood. (iii)
Greedy constructive heuristic of W.Zhang and 3-opt local search heuristic are
used to generate the initial population. A computational experiment on TSPLIB
instances shows that the proposed algorithm yields competitive results to other
well-known memetic algorithms for asymmetric travelling salesman problem.Comment: Proc. of The 11th International Conference on Large-Scale Scientific
Computations (LSSC-17), June 5 - 9, 2017, Sozopol, Bulgari
The Complexity of Routing with Few Collisions
We study the computational complexity of routing multiple objects through a
network in such a way that only few collisions occur: Given a graph with
two distinct terminal vertices and two positive integers and , the
question is whether one can connect the terminals by at least routes (e.g.
paths) such that at most edges are time-wise shared among them. We study
three types of routes: traverse each vertex at most once (paths), each edge at
most once (trails), or no such restrictions (walks). We prove that for paths
and trails the problem is NP-complete on undirected and directed graphs even if
is constant or the maximum vertex degree in the input graph is constant.
For walks, however, it is solvable in polynomial time on undirected graphs for
arbitrary and on directed graphs if is constant. We additionally study
for all route types a variant of the problem where the maximum length of a
route is restricted by some given upper bound. We prove that this
length-restricted variant has the same complexity classification with respect
to paths and trails, but for walks it becomes NP-complete on undirected graphs
Routing Games over Time with FIFO policy
We study atomic routing games where every agent travels both along its
decided edges and through time. The agents arriving on an edge are first lined
up in a \emph{first-in-first-out} queue and may wait: an edge is associated
with a capacity, which defines how many agents-per-time-step can pop from the
queue's head and enter the edge, to transit for a fixed delay. We show that the
best-response optimization problem is not approximable, and that deciding the
existence of a Nash equilibrium is complete for the second level of the
polynomial hierarchy. Then, we drop the rationality assumption, introduce a
behavioral concept based on GPS navigation, and study its worst-case efficiency
ratio to coordination.Comment: Submission to WINE-2017 Deadline was August 2nd AoE, 201
Vertex-Coloring with Star-Defects
Defective coloring is a variant of traditional vertex-coloring, according to
which adjacent vertices are allowed to have the same color, as long as the
monochromatic components induced by the corresponding edges have a certain
structure. Due to its important applications, as for example in the
bipartisation of graphs, this type of coloring has been extensively studied,
mainly with respect to the size, degree, and acyclicity of the monochromatic
components.
In this paper we focus on defective colorings in which the monochromatic
components are acyclic and have small diameter, namely, they form stars. For
outerplanar graphs, we give a linear-time algorithm to decide if such a
defective coloring exists with two colors and, in the positive case, to
construct one. Also, we prove that an outerpath (i.e., an outerplanar graph
whose weak-dual is a path) always admits such a two-coloring. Finally, we
present NP-completeness results for non-planar and planar graphs of bounded
degree for the cases of two and three colors
Cost implication analysis of concrete and Masonry waste in construction project
Concrete and masonry waste are the main types of waste typically generated at a construction project. There is a lack of studies in the country regarding the cost implication of managing these types of construction waste To address this need in Malaysia, the study is carried out to measure the disposal cost of concrete and masonry waste. The study was carried out by a site visit method using an indirect measurement approach to quantify the quantity of waste generated at the project. Based on the recorded number of trips for waste collection, the total expenditure to dispose the waste were derived in three construction stages. Data was collected four times a week for the period July 2014 to July 2015. The total waste generated at the study site was 762.51 m3 and the cost incurred for the 187 truck trips required to dispose the waste generated from the project site to the nearby landfill was RM22,440.00. The findings will be useful to both researchers and policy makers concerned with construction waste
Steiner trees for hereditary graph classes.
We consider the classical problems (Edge) Steiner Tree and Vertex Steiner Tree after restricting the input to some class of graphs characterized by a small set of forbidden induced subgraphs. We show a dichotomy for the former problem restricted to (H1,H2) -free graphs and a dichotomy for the latter problem restricted to H-free graphs. We find that there exists an infinite family of graphs H such that Vertex Steiner Tree is polynomial-time solvable for H-free graphs, whereas there exist only two graphs H for which this holds for Edge Steiner Tree. We also find that Edge Steiner Tree is polynomial-time solvable for (H1,H2) -free graphs if and only if the treewidth of the class of (H1,H2) -free graphs is bounded (subject to Pâ NP ). To obtain the latter result, we determine all pairs (H1,H2) for which the class of (H1,H2) -free graphs has bounded treewidth
Parameterized Inapproximability of Independent Set in -Free Graphs
We study the Independent Set (IS) problem in -free graphs, i.e., graphs
excluding some fixed graph as an induced subgraph. We prove several
inapproximability results both for polynomial-time and parameterized
algorithms.
Halld\'orsson [SODA 1995] showed that for every IS has a
polynomial-time -approximation in -free
graphs. We extend this result by showing that -free graphs admit a
polynomial-time -approximation, where is the
size of a maximum independent set in . Furthermore, we complement the result
of Halld\'orsson by showing that for some there is
no polynomial-time -approximation for these graphs, unless NP = ZPP.
Bonnet et al. [IPEC 2018] showed that IS parameterized by the size of the
independent set is W[1]-hard on graphs which do not contain (1) a cycle of
constant length at least , (2) the star , and (3) any tree with two
vertices of degree at least at constant distance.
We strengthen this result by proving three inapproximability results under
different complexity assumptions for almost the same class of graphs (we weaken
condition (2) that does not contain ). First, under the ETH, there
is no algorithm for any computable function .
Then, under the deterministic Gap-ETH, there is a constant such that
no -approximation can be computed in time. Also,
under the stronger randomized Gap-ETH there is no such approximation algorithm
with runtime .
Finally, we consider the parameterization by the excluded graph , and show
that under the ETH, IS has no algorithm in -free graphs
and under Gap-ETH there is no -approximation for -free
graphs with runtime .Comment: Preliminary version of the paper in WG 2020 proceeding
Travelling on Graphs with Small Highway Dimension
We study the Travelling Salesperson (TSP) and the Steiner Tree problem (STP)
in graphs of low highway dimension. This graph parameter was introduced by
Abraham et al. [SODA 2010] as a model for transportation networks, on which TSP
and STP naturally occur for various applications in logistics. It was
previously shown [Feldmann et al. ICALP 2015] that these problems admit a
quasi-polynomial time approximation scheme (QPTAS) on graphs of constant
highway dimension. We demonstrate that a significant improvement is possible in
the special case when the highway dimension is 1, for which we present a
fully-polynomial time approximation scheme (FPTAS). We also prove that STP is
weakly NP-hard for these restricted graphs. For TSP we show NP-hardness for
graphs of highway dimension 6, which answers an open problem posed in [Feldmann
et al. ICALP 2015]
The approximability of the String Barcoding problem
The String Barcoding (SBC) problem, introduced by Rash and Gusfield (RECOMB, 2002), consists in finding a minimum set of substrings that can be used to distinguish between all members of a set of given strings. In a computational biology context, the given strings represent a set of known viruses, while the substrings can be used as probes for an hybridization experiment via microarray. Eventually, one aims at the classification of new strings (unknown viruses) through the result of the hybridization experiment. In this paper we show that SBC is as hard to approximate as Set Cover. Furthermore, we show that the constrained version of SBC (with probes of bounded length) is also hard to approximate. These negative results are tight
- âŠ