2,774 research outputs found

    Flutter analysis of a morphing wing technology demonstrator : numerical simulation and wind tunnel testing

    Get PDF
    As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing section situated at the tip of the wing; the first model corresponds to a traditional aluminium upper surface skin of constant thickness and the second model corresponds to a composite optimized upper surface skin for morphing capabilities. The two models were analyzed for flutter occurrence and effects on the aeroelastic behaviour of the wing were studied by replacing the aluminium upper surface skin of the wing with a specially developed composite version. The morphing wing model with composite upper surface was manufactured and fitted with three accelerometers to record the amplitudes and frequencies during tests at the subsonic wind tunnel facility at the National Research Council. The results presented showed that no aeroelastic phenomenon occurred at the speeds, angles of attack and aileron deflections studied in the wind tunnel and confirmed the prediction of the flutter analysis on the frequencies and modal displacements

    The Role of Deontic Logic in the Specification of Information Systems

    Get PDF
    In this paper we discuss the role that deontic logic plays in the specification of information systems, either because constraints on the systems directly concern norms or, and even more importantly, system constraints are considered ideal but violable (so-called `soft¿ constraints).\ud To overcome the traditional problems with deontic logic (the so-called paradoxes), we first state the importance of distinguishing between ought-to-be and ought-to-do constraints and next focus on the most severe paradox, the so-called Chisholm paradox, involving contrary-to-duty norms. We present a multi-modal extension of standard deontic logic (SDL) to represent the ought-to-be version of the Chisholm set properly. For the ought-to-do variant we employ a reduction to dynamic logic, and show how the Chisholm set can be treated adequately in this setting. Finally we discuss a way of integrating both ought-to-be and ought-to-do reasoning, enabling one to draw conclusions from ought-to-be constraints to ought-to-do ones, and show by an example the use(fulness) of this

    Autologous Fat Transfer with SEFFI (Superficial Enhanced Fluid Fat Injection) Technique in Periocular Reconstruction

    Get PDF
    PURPOSE: To evaluate the aesthetic and functional outcomes of autologous fat transfer using the SEFFI (superficial enhanced fluid fat injection) technique for reconstruction of the periocular area. METHODS: Autologous fat injections prepared with the 0.5 mL and 0.8 mL SEFFI technique were used in four patients for periocular rehabilitation. RESULTS: Case 1 (C1): A patient with left-sided progressive facial hemiatrophy underwent ipsilateral volumizing with 0.8 SEFFI in the superior, temporal, and inferior periorbital areas, and 0.5 SEFFI in both eyelids. C2: A 21-year-old female with a post trauma frontal scar, left ptosis, and lower eyelid retraction was treated with 0.5 SEFFI applied in the scar area associated with an upper eyelid conjunctivomullerectomy and resection of the lower eyelid retractors. C3: A patient with previous left-eye evisceration and orbital floor and medial wall fractures underwent socket reconstruction with buccal mucosal graft in the lower fornix and 0.5 SEFFI injections in both superior and inferior eyelids. SEFFI was also applied in the intraorbital space for correction of the enophthalmos. C4: A patient with lower lid retraction post blepharoplasty was treated with 0.8 SEFFI injections in lower eyelids and malar areas, complemented with a bilateral lateral cantopexy. CONCLUSIONS: Autologous fat transfer with SEFFI technique is an effective and safe procedure in cases of periocular rehabilitation.info:eu-repo/semantics/publishedVersio

    Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

    Full text link
    [EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.This work was supported by the European Research Council (erc.europa.eu; ERC-2011-StG-281191-VIRMUT to RS), the Spanish Ministerio de Economia y Competitividad (www.mineco.gob.es; BFU2013-41329 grant to RS, BFU2014-56812-P grant to RF, and a predoctoral fellowship to ALC), and the Spanish Junta de Comunidades de Castilla-La Mancha (www.castillalamancha.es;postdoctoral fellowship to CB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.López-Carrasco, MA.; Ballesteros Martínez, C.; Sentandreu, V.; Delgado Villar, SG.; Gago Zachert, SP.; Flores Pedauye, R.; Sanjuan Verdeguer, R. (2017). Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathogens. 13(9):1-17. https://doi.org/10.1371/journal.ppat.1006547S117139Ganai, R. A., & Johansson, E. (2016). DNA Replication—A Matter of Fidelity. Molecular Cell, 62(5), 745-755. doi:10.1016/j.molcel.2016.05.003Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26(8), 345-352. doi:10.1016/j.tig.2010.05.003Sanjuán, R., & Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences, 73(23), 4433-4448. doi:10.1007/s00018-016-2299-6Gago, S., Elena, S. F., Flores, R., & Sanjuan, R. (2009). Extremely High Mutation Rate of a Hammerhead Viroid. Science, 323(5919), 1308-1308. doi:10.1126/science.1169202Flores, R., Gago-Zachert, S., Serra, P., Sanjuán, R., & Elena, S. F. (2014). Viroids: Survivors from the RNA World? Annual Review of Microbiology, 68(1), 395-414. doi:10.1146/annurev-micro-091313-103416Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027Steger, G., & Perreault, J.-P. (2016). Structure and Associated Biological Functions of Viroids. Advances in Virus Research, 141-172. doi:10.1016/bs.aivir.2015.11.002Diener, T. O. (1989). Circular RNAs: relics of precellular evolution? Proceedings of the National Academy of Sciences, 86(23), 9370-9374. doi:10.1073/pnas.86.23.9370Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239Navarro, J.-A., Vera, A., & Flores, R. (2000). A Chloroplastic RNA Polymerase Resistant to Tagetitoxin Is Involved in Replication of Avocado Sunblotch Viroid. Virology, 268(1), 218-225. doi:10.1006/viro.1999.0161Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Carbonell, A., De la Peña, M., Flores, R., & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 34(19), 5613-5622. doi:10.1093/nar/gkl717Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627PRODY, G. A., BAKOS, J. T., BUZAYAN, J. M., SCHNEIDER, I. R., & BRUENING, G. (1986). Autolytic Processing of Dimeric Plant Virus Satellite RNA. Science, 231(4745), 1577-1580. doi:10.1126/science.231.4745.1577Nohales, M.-A., Molina-Serrano, D., Flores, R., & Daros, J.-A. (2012). Involvement of the Chloroplastic Isoform of tRNA Ligase in the Replication of Viroids Belonging to the Family Avsunviroidae. Journal of Virology, 86(15), 8269-8276. doi:10.1128/jvi.00629-12Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560Gas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109Brass, J. R. J., Owens, R. A., Matoušek, J., & Steger, G. (2017). Viroid quasispecies revealed by deep sequencing. RNA Biology, 14(3), 317-325. doi:10.1080/15476286.2016.1272745Bull, J. J., Sanjuán, R., & Wilke, C. O. (2007). Theory of Lethal Mutagenesis for Viruses. Journal of Virology, 81(6), 2930-2939. doi:10.1128/jvi.01624-06Cuevas, J. M., González-Candelas, F., Moya, A., & Sanjuán, R. (2009). Effect of Ribavirin on the Mutation Rate and Spectrum of Hepatitis C Virus In Vivo. Journal of Virology, 83(11), 5760-5764. doi:10.1128/jvi.00201-09Ribeiro, R. M., Li, H., Wang, S., Stoddard, M. B., Learn, G. H., Korber, B. T., … Perelson, A. S. (2012). Quantifying the Diversification of Hepatitis C Virus (HCV) during Primary Infection: Estimates of the In Vivo Mutation Rate. PLoS Pathogens, 8(8), e1002881. doi:10.1371/journal.ppat.1002881Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861Cuevas, J. M., Geller, R., Garijo, R., López-Aldeguer, J., & Sanjuán, R. (2015). Extremely High Mutation Rate of HIV-1 In Vivo. PLOS Biology, 13(9), e1002251. doi:10.1371/journal.pbio.1002251Acevedo, A., & Andino, R. (2014). Library preparation for highly accurate population sequencing of RNA viruses. Nature Protocols, 9(7), 1760-1769. doi:10.1038/nprot.2014.118Kennedy, S. R., Schmitt, M. W., Fox, E. J., Kohrn, B. F., Salk, J. J., Ahn, E. H., … Loeb, L. A. (2014). Detecting ultralow-frequency mutations by Duplex Sequencing. Nature Protocols, 9(11), 2586-2606. doi:10.1038/nprot.2014.170Franklin, R. M. (1966). Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proceedings of the National Academy of Sciences, 55(6), 1504-1511. doi:10.1073/pnas.55.6.1504López-Carrasco, A., Gago-Zachert, S., Mileti, G., Minoia, S., Flores, R., & Delgado, S. (2015). The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in theirin vivoRNA conformations. RNA Biology, 13(1), 83-97. doi:10.1080/15476286.2015.1119365Keese, P., & Symons, R. H. (1985). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, 82(14), 4582-4586. doi:10.1073/pnas.82.14.4582López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005Flores, R., Hernandez, C., de la Peña, M., Vera, A., & Daros, J.-A. (2001). Hammerhead Ribozyme Structure and Function in Plant RNA Replication. Ribonucleases - Part A, 540-552. doi:10.1016/s0076-6879(01)41175-xMartick, M., & Scott, W. G. (2006). Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis. Cell, 126(2), 309-320. doi:10.1016/j.cell.2006.06.036Ruffner, D. E., Stormo, G. D., & Uhlenbeck, O. C. (1990). Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry, 29(47), 10695-10702. doi:10.1021/bi00499a018Flores, R., Serra, P., Minoia, S., Di Serio, F., & Navarro, B. (2012). Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs. Frontiers in Microbiology, 3. doi:10.3389/fmicb.2012.00217Owens, R. A., Chen, W., Hu, Y., & Hsu, Y.-H. (1995). Suppression of Potato Spindle Tuber Viroid Replication and Symptom Expression by Mutations Which Stabilize the Pathogenicity Domain. Virology, 208(2), 554-564. doi:10.1006/viro.1995.1186Takeda, R., Petrov, A. I., Leontis, N. B., & Ding, B. (2011). A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana. The Plant Cell, 23(1), 258-272. doi:10.1105/tpc.110.081414Zhong, X., Leontis, N., Qian, S., Itaya, A., Qi, Y., Boris-Lawrie, K., & Ding, B. (2006). Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and Mutagenesis Reveal Its Essential Role in Replication. Journal of Virology, 80(17), 8566-8581. doi:10.1128/jvi.00837-06Zhong, X., Tao, X., Stombaugh, J., Leontis, N., & Ding, B. (2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. The EMBO Journal, 26(16), 3836-3846. doi:10.1038/sj.emboj.7601812Zhong, X., Archual, A. J., Amin, A. A., & Ding, B. (2008). A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell, 20(1), 35-47. doi:10.1105/tpc.107.056606Thomas, M. J., Platas, A. A., & Hawley, D. K. (1998). Transcriptional Fidelity and Proofreading by RNA Polymerase II. Cell, 93(4), 627-637. doi:10.1016/s0092-8674(00)81191-5Gout, J.-F., Thomas, W. K., Smith, Z., Okamoto, K., & Lynch, M. (2013). Large-scale detection of in vivo transcription errors. Proceedings of the National Academy of Sciences, 110(46), 18584-18589. doi:10.1073/pnas.1309843110Hedtke, B. (1997). Mitochondrial and Chloroplast Phage-Type RNA Polymerases in Arabidopsis. Science, 277(5327), 809-811. doi:10.1126/science.277.5327.809Lerbs-Mache, S. (1993). The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proceedings of the National Academy of Sciences, 90(12), 5509-5513. doi:10.1073/pnas.90.12.5509Oldenkott, B., Yamaguchi, K., Tsuji-Tsukinoki, S., Knie, N., & Knoop, V. (2014). Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyteSelaginella uncinata. RNA, 20(10), 1499-1506. doi:10.1261/rna.045575.114Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften, 58(10), 465-523. doi:10.1007/bf00623322Lynch, M. (2011). The Lower Bound to the Evolution of Mutation Rates. Genome Biology and Evolution, 3, 1107-1118. doi:10.1093/gbe/evr066Bradwell, K., Combe, M., Domingo-Calap, P., & Sanjuán, R. (2013). Correlation Between Mutation Rate and Genome Size in Riboviruses: Mutation Rate of Bacteriophage Qβ. Genetics, 195(1), 243-251. doi:10.1534/genetics.113.154963Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences, 88(16), 7160-7164. doi:10.1073/pnas.88.16.7160Schmitt, M. W., Kennedy, S. R., Salk, J. J., Fox, E. J., Hiatt, J. B., & Loeb, L. A. (2012). Detection of ultra-rare mutations by next-generation sequencing. Proceedings of the National Academy of Sciences, 109(36), 14508-14513. doi:10.1073/pnas.120871510

    Current and prospective pharmacotherapies for the treatment of pleural mesothelioma

    Get PDF
    Introduction: Mesothelioma is a rare asbestos-linked cancer with an expected incidence peak between 2015–2030. Therapies remain ineffective, thus developing and testing novel treatments is important for both oncologists and researchers. Areas covered: After describing mesothelioma and the shortcomings of current therapies, the article discusses numerous therapies in turn such as immunotherapy (passive and active), gene therapy (such as suicide gene therapy) and targeted therapy such as tyrosine kinase inhibitors. The bases for different therapies and clinical trials at different phases are also described. The article concludes by detailing possible reasons for therapy failure. Expert opinion: Despite the many attempts to uncover new therapeutic options, mesothelioma is still an orphan disease, complicated by factors such as the inflammatory microenvironment and low mutational load. Our opinion is that uncovering the biological mechanisms behind mesothelioma development will assist therapy development. The lack of efficacy of tyrosine kinase inhibitors and modest anti-angiogenic activity indicates a less relevant role for tumor cell proliferation and neoangiogenesis, thus the shortcut of treating mesothelioma with therapies from other cancers may be unsound. Conversely, many lines of evidence indicate that focussing on the survival mechanisms that tumor cells exploit may yield better therapeutics, particularly nutrition and cellular machinery

    Quality and Safety Aspects of Infant Nutrition

    Get PDF
    Quality and safety aspects of infant nutrition are of key importance for child health, but oftentimes they do not get much attention by health care professionals whose interest tends to focus on functional benefits of early nutrition. Unbalanced diets and harmful food components induce particularly high risks for untoward effects in infants because of their rapid growth, high nutrient needs, and their typical dependence on only one or few foods during the first months of life. The concepts, standards and practices that relate to infant food quality and safety were discussed at a scientific workshop organized by the Child Health Foundation and the Early Nutrition Academy jointly with the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, and a summary is provided here. The participants reviewed past and current issues on quality and safety, the role of different stakeholders, and recommendations to avert future issues. It was concluded that a high level of quality and safety is currently achieved, but this is no reason for complacency. The food industry carries the primary responsibility for the safety and suitability of their products, including the quality of composition, raw materials and production processes. Introduction of new or modified products should be preceded by a thorough science based review of suitability and safety by an independent authority. Food safety events should be managed on an international basis. Global collaboration of food producers, food-safety authorities, paediatricians and scientists is needed to efficiently exchange information and to best protect public health. Copyright (C) 2012 S. Karger AG, Base

    Untargeted Metabolomics Used to Describe the Chemical Composition, Antioxidant and Antimicrobial Effects of Extracts from Pleurotus spp. Mycelium Grown in Different Culture Media

    Get PDF
    Pleurotus species isolated in vitro were studied to determine the effect of different media on their production of secondary metabolites, antimicrobial, and antioxidant activity. The different metabolites among Pleurotus samples covered a total of 58 pathways. Comparisons were made between the metabolic profiles of Pleurotus spp. mycelia grown in two substrates: Potato-dextroseagar-PDA, used as control (S1), and PDA enriched with 0.5 % of wheat straw (S2). The main finding was that the metabolic pathways are strongly influenced by the chemical composition of the growth substrate. The antibacterial effects were particularly evident against Escherichia coli, whereas Arthroderma curreyi (CCF 5207) and Trichophyton rubrum (CCF 4933) were the dermatophytes more sensitive to the mushroom extracts. The present study supports more in-depth investigations, aimed at evaluating the influence of growth substrate on Pleurotus spp. antimicrobial and antioxidant properties
    corecore