285 research outputs found

    Methods for comparative metagenomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metagenomics is a rapidly growing field of research that aims at studying uncultured organisms to understand the true diversity of microbes, their functions, cooperation and evolution, in environments such as soil, water, ancient remains of animals, or the digestive system of animals and humans. The recent development of ultra-high throughput sequencing technologies, which do not require cloning or PCR amplification, and can produce huge numbers of DNA reads at an affordable cost, has boosted the number and scope of metagenomic sequencing projects. Increasingly, there is a need for new ways of comparing multiple metagenomics datasets, and for fast and user-friendly implementations of such approaches.</p> <p>Results</p> <p>This paper introduces a number of new methods for interactively exploring, analyzing and comparing multiple metagenomic datasets, which will be made freely available in a new, comparative version 2.0 of the stand-alone metagenome analysis tool MEGAN.</p> <p>Conclusion</p> <p>There is a great need for powerful and user-friendly tools for comparative analysis of metagenomic data and MEGAN 2.0 will help to fill this gap.</p

    The Formation and Evolution of the First Massive Black Holes

    Full text link
    The first massive astrophysical black holes likely formed at high redshifts (z>10) at the centers of low mass (~10^6 Msun) dark matter concentrations. These black holes grow by mergers and gas accretion, evolve into the population of bright quasars observed at lower redshifts, and eventually leave the supermassive black hole remnants that are ubiquitous at the centers of galaxies in the nearby universe. The astrophysical processes responsible for the formation of the earliest seed black holes are poorly understood. The purpose of this review is threefold: (1) to describe theoretical expectations for the formation and growth of the earliest black holes within the general paradigm of hierarchical cold dark matter cosmologies, (2) to summarize several relevant recent observations that have implications for the formation of the earliest black holes, and (3) to look into the future and assess the power of forthcoming observations to probe the physics of the first active galactic nuclei.Comment: 39 pages, review for "Supermassive Black Holes in the Distant Universe", Ed. A. J. Barger, Kluwer Academic Publisher

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    MetaMine – A tool to detect and analyse gene patterns in their environmental context

    Get PDF
    Background Modern sequencing technologies allow rapid sequencing and bioinformatic analysis of genomes and metagenomes. With every new sequencing project a vast number of new proteins become available with many genes remaining functionally unclassified based on evidences from sequence similarities alone. Extending similarity searches with gene pattern approaches, defined as genes sharing a distinct genomic neighbourhood, have shown to significantly improve the number of functional assignments. Further functional evidences can be gained by correlating these gene patterns with prevailing environmental parameters. MetaMine was developed to approach the large pool of unclassified proteins by searching for recurrent gene patterns across habitats based on key genes. Results MetaMine is an interactive data mining tool which enables the detection of gene patterns in an environmental context. The gene pattern search starts with a user defined environmentally interesting key gene. With this gene a BLAST search is carried out against the Microbial Ecological Genomics DataBase (MEGDB) containing marine genomic and metagenomic sequences. This is followed by the determination of all neighbouring genes within a given distance and a search for functionally equivalent genes. In the final step a set of common genes present in a defined number of distinct genomes is determined. The gene patterns found are associated with their individual pattern instances describing gene order and directions. They are presented together with information about the sample and the habitat. MetaMine is implemented in Java and provided as a client/server application with a user-friendly graphical user interface. The system was evaluated with environmentally relevant genes related to the methane-cycle and carbon monoxide oxidation. Conclusion MetaMine offers a targeted, semi-automatic search for gene patterns based on expert input. The graphical user interface of MetaMine provides a user-friendly overview of the computed gene patterns for further inspection in an ecological context. Prevailing biological processes associated with a key gene can be used to infer new annotations and shape hypotheses to guide further analyses. The use-cases demonstrate that meaningful gene patterns can be quickly detected using MetaMine

    Probing Metagenomics by Rapid Cluster Analysis of Very Large Datasets

    Get PDF
    BACKGROUND: The scale and diversity of metagenomic sequencing projects challenge both our technical and conceptual approaches in gene and genome annotations. The recent Sorcerer II Global Ocean Sampling (GOS) expedition yielded millions of predicted protein sequences, which significantly altered the landscape of known protein space by more than doubling its size and adding thousands of new families (Yooseph et al., 2007 PLoS Biol 5, e16). Such datasets, not only by their sheer size, but also by many other features, defy conventional analysis and annotation methods. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we describe an approach for rapid analysis of the sequence diversity and the internal structure of such very large datasets by advanced clustering strategies using the newly modified CD-HIT algorithm. We performed a hierarchical clustering analysis on the 17.4 million Open Reading Frames (ORFs) identified from the GOS study and found over 33 thousand large predicted protein clusters comprising nearly 6 million sequences. Twenty percent of these clusters did not match known protein families by sequence similarity search and might represent novel protein families. Distributions of the large clusters were illustrated on organism composition, functional class, and sample locations. CONCLUSION/SIGNIFICANCE: Our clustering took about two orders of magnitude less computational effort than the similar protein family analysis of original GOS study. This approach will help to analyze other large metagenomic datasets in the future. A Web server with our clustering results and annotations of predicted protein clusters is available online at http://tools.camera.calit2.net/gos under the CAMERA project

    Confidence from uncertainty - A multi-target drug screening method from robust control theory

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Robustness is a recognized feature of biological systems that evolved as a defence to environmental variability. Complex diseases such as diabetes, cancer, bacterial and viral infections, exploit the same mechanisms that allow for robust behaviour in healthy conditions to ensure their own continuance. Single drug therapies, while generally potent regulators of their specific protein/gene targets, often fail to counter the robustness of the disease in question. Multi-drug therapies offer a powerful means to restore disrupted biological networks, by targeting the subsystem of interest while preventing the diseased network from reconciling through available, redundant mechanisms. Modelling techniques are needed to manage the high number of combinatorial possibilities arising in multi-drug therapeutic design, and identify synergistic targets that are robust to system uncertainty.</p> <p>Results</p> <p>We present the application of a method from robust control theory, Structured Singular Value or μ- analysis, to identify highly effective multi-drug therapies by using robustness in the face of uncertainty as a new means of target discrimination. We illustrate the method by means of a case study of a negative feedback network motif subject to parametric uncertainty.</p> <p>Conclusions</p> <p>The paper contributes to the development of effective methods for drug screening in the context of network modelling affected by parametric uncertainty. The results have wide applicability for the analysis of different sources of uncertainty like noise experienced in the data, neglected dynamics, or intrinsic biological variability.</p

    Evaluating the Fidelity of De Novo Short Read Metagenomic Assembly Using Simulated Data

    Get PDF
    A frequent step in metagenomic data analysis comprises the assembly of the sequenced reads. Many assembly tools have been published in the last years targeting data coming from next-generation sequencing (NGS) technologies but these assemblers have not been designed for or tested in multi-genome scenarios that characterize metagenomic studies. Here we provide a critical assessment of current de novo short reads assembly tools in multi-genome scenarios using complex simulated metagenomic data. With this approach we tested the fidelity of different assemblers in metagenomic studies demonstrating that even under the simplest compositions the number of chimeric contigs involving different species is noticeable. We further showed that the assembly process reduces the accuracy of the functional classification of the metagenomic data and that these errors can be overcome raising the coverage of the studied metagenome. The results presented here highlight the particular difficulties that de novo genome assemblers face in multi-genome scenarios demonstrating that these difficulties, that often compromise the functional classification of the analyzed data, can be overcome with a high sequencing effort

    Finding the Needles in the Metagenome Haystack

    Get PDF
    In the collective genomes (the metagenome) of the microorganisms inhabiting the Earth’s diverse environments is written the history of life on this planet. New molecular tools developed and used for the past 15 years by microbial ecologists are facilitating the extraction, cloning, screening, and sequencing of these genomes. This approach allows microbial ecologists to access and study the full range of microbial diversity, regardless of our ability to culture organisms, and provides an unprecedented access to the breadth of natural products that these genomes encode. However, there is no way that the mere collection of sequences, no matter how expansive, can provide full coverage of the complex world of microbial metagenomes within the foreseeable future. Furthermore, although it is possible to fish out highly informative and useful genes from the sea of gene diversity in the environment, this can be a highly tedious and inefficient procedure. Microbial ecologists must be clever in their pursuit of ecologically relevant, valuable, and niche-defining genomic information within the vast haystack of microbial diversity. In this report, we seek to describe advances and prospects that will help microbial ecologists glean more knowledge from investigations into metagenomes. These include technological advances in sequencing and cloning methodologies, as well as improvements in annotation and comparative sequence analysis. More significant, however, will be ways to focus in on various subsets of the metagenome that may be of particular relevance, either by limiting the target community under study or improving the focus or speed of screening procedures. Lastly, given the cost and infrastructure necessary for large metagenome projects, and the almost inexhaustible amount of data they can produce, trends toward broader use of metagenome data across the research community coupled with the needed investment in bioinformatics infrastructure devoted to metagenomics will no doubt further increase the value of metagenomic studies in various environments

    Alternative splicing and the progesterone receptor in breast cancer

    Get PDF
    Progesterone receptor status is a marker for hormone responsiveness and disease prognosis in breast cancer. Progesterone receptor negative tumours have generally been shown to have a poorer prognosis than progesterone receptor positive tumours. The observed loss of progesterone receptor could be through a range of mechanisms, including the generation of alternatively spliced progesterone receptor variants that are not detectable by current screening methods. Many progesterone receptor mRNA variants have been described with deletions of various whole, multiple or partial exons that encode differing protein functional domains. These variants may alter the progestin responsiveness of a tissue and contribute to the abnormal growth associated with breast cancer. Absence of specific functional domains from these spliced variants may also make them undetectable or indistinguishable from full length progesterone receptor by conventional antibodies. A comprehensive investigation into the expression profile and activity of progesterone receptor spliced variants in breast cancer is required to advance our understanding of tumour hormone receptor status. This, in turn, may aid the development of new biomarkers of disease prognosis and improve adjuvant treatment decisions

    Structural genomics is the largest contributor of novel structural leverage

    Get PDF
    The Protein Structural Initiative (PSI) at the US National Institutes of Health (NIH) is funding four large-scale centers for structural genomics (SG). These centers systematically target many large families without structural coverage, as well as very large families with inadequate structural coverage. Here, we report a few simple metrics that demonstrate how successfully these efforts optimize structural coverage: while the PSI-2 (2005-now) contributed more than 8% of all structures deposited into the PDB, it contributed over 20% of all novel structures (i.e. structures for protein sequences with no structural representative in the PDB on the date of deposition). The structural coverage of the protein universe represented by today’s UniProt (v12.8) has increased linearly from 1992 to 2008; structural genomics has contributed significantly to the maintenance of this growth rate. Success in increasing novel leverage (defined in Liu et al. in Nat Biotechnol 25:849–851, 2007) has resulted from systematic targeting of large families. PSI’s per structure contribution to novel leverage was over 4-fold higher than that for non-PSI structural biology efforts during the past 8 years. If the success of the PSI continues, it may just take another ~15 years to cover most sequences in the current UniProt database
    corecore