66 research outputs found

    Investigation of the Role of TNF-α Converting Enzyme (TACE) in the Inhibition of Cell Surface and Soluble TNF-α Production by Acute Ethanol Exposure

    Get PDF
    Toll-like receptors (TLRs) play a fundamental role in the immune system by detecting pathogen associated molecular patterns (PAMPs) to sense host infection. Ethanol at doses relevant for humans inhibits the pathogen induced cytokine response mediated through TLRs. The current study was designed to investigate the mechanisms of this effect by determining whether ethanol inhibits TLR3 and TLR4 mediated TNF-α secretion through inhibition of transcription factor activation or post-transcriptional effects. In NF-κB reporter mice, activation of NF-κB in vivo by LPS was inhibited by ethanol (LPS alone yielded 170,000±35,300 arbitrary units of light emission; LPS plus ethanol yielded 56,120±16880, p = 0.04). Inhibition of protein synthesis by cycloheximide revealed that poly I:C- or LPS-induced secreted TNF-α is synthesized de novo, not released from cellular stores. Using real time RT-PCR, we found inhibition of LPS and poly I:C induced TNF-α gene transcription by ethanol. Using an inhibitor of tumor necrosis factor alpha converting enzyme (TACE), we found that shedding caused by TACE is a prerequisite for TNF-α release after pathogen challenge. Flow cytometry was used to investigate if ethanol decreases TNF-α secretion by inhibition of TACE. In cells treated with LPS, ethanol decreased both TNF-α cell surface expression and secretion. For example, 4.69±0.60% of untreated cells were positive for cell surface TNF-α, LPS increased this to 25.18±0.85%, which was inhibited by ethanol (86.8 mM) to 14.29±0.39% and increased by a TACE inhibitor to 57.88±0.62%. In contrast, cells treated with poly I:C had decreased secretion of TNF-α but not cell surface expression. There was some evidence for inhibition of TACE by ethanol in the case of LPS, but decreased TNF-α gene expression seems to be the major mechanism of ethanol action in this system

    Differential modulation of corticospinal excitability during haptic sensing of 2-D patterns vs. textures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, we showed a selective enhancement in corticospinal excitability when participants actively discriminated raised 2-D symbols with the index finger. This extra-facilitation likely reflected activation in the premotor and dorsal prefrontal cortices modulating motor cortical activity during attention to haptic sensing. However, this parieto-frontal network appears to be finely modulated depending upon whether haptic sensing is directed towards material or geometric properties. To examine this issue, we contrasted changes in corticospinal excitability when young adults (n = 18) were engaged in either a roughness discrimination on two gratings with different spatial periods, or a 2-D pattern discrimination of the relative offset in the alignment of a row of small circles in the upward or downward direction.</p> <p>Results</p> <p>A significant effect of task conditions was detected on motor evoked potential amplitudes, reflecting the observation that corticospinal facilitation was, on average, ~18% greater in the pattern discrimination than in the roughness discrimination.</p> <p>Conclusions</p> <p>This differential modulation of corticospinal excitability during haptic sensing of 2-D patterns vs. roughness is consistent with the existence of preferred activation of a visuo-haptic cortical dorsal stream network including frontal motor areas during spatial vs. intensive processing of surface properties in the haptic system.</p

    CPP-ZFN: A potential DNA-targeting anti-malarial drug

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multidrug-resistant <it>Plasmodium </it>is of major concern today. Effective vaccines or successful applications of RNAi-based strategies for the treatment of malaria are currently unavailable. An unexplored area in the field of malaria research is the development of DNA-targeting drugs that can specifically interact with parasitic DNA and introduce deleterious changes, leading to loss of vital genome function and parasite death.</p> <p>Presentation of the hypothesis</p> <p>Advances in the development of zinc finger nuclease (ZFN) with engineered DNA recognition domains allow us to design and develop nuclease of high target sequence specificity with a mega recognition site that typically occurs only once in the genome. Moreover, cell-penetrating peptides (CPP) can cross the cell plasma membrane and deliver conjugated protein, nucleic acid, or any other cargo to the cytoplasm, nucleus, or mitochondria. This article proposes that a drug from the combination of the CPP and ZFN systems can effectively enter the intracellular parasite, introduce deleterious changes in its genome, and eliminate the parasite from the infected cells.</p> <p>Testing the hypothesis</p> <p>Availability of a DNA-binding motif for more than 45 triplets and its modular nature, with freedom to change number of fingers in a ZFN, makes development of customized ZFN against diverse target DNA sequence of any gene feasible. Since the <it>Plasmodium </it>genome is highly AT rich, there is considerable sequence site diversity even for the structurally and functionally conserved enzymes between <it>Plasmodium </it>and humans. CPP can be used to deliver ZFN to the intracellular nucleus of the parasite. Signal-peptide-based heterologous protein translocation to <it>Plasmodium</it>-infected RBCs (iRBCs) and different <it>Plasmodium </it>organelles have been achieved. With successful fusion of CPP with mitochondrial- and nuclear-targeting peptides, fusion of CPP with 1 more <it>Plasmodium </it>cell membrane translocation peptide seems achievable.</p> <p>Implications of the hypothesis</p> <p>Targeting of the <it>Plasmodium </it>genome using ZFN has great potential for the development of anti-malarial drugs. It allows the development of a single drug against all malarial infections, including multidrug-resistant strains. Availability of multiple ZFN target sites in a single gene will provide alternative drug target sites to combat the development of resistance in the future.</p

    Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant

    Get PDF
    BACKGROUND: Inositol 1,4,5trisphosphate (IP(3)) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. METHODOLOGY/PRINCIPAL FINDINGS: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3(mNab)) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3(mNab) alleles are phenotypically normal. However, the presence of one Plcd3(mNab) allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved. Mice double homozygous for both the Del(9)olt1Pas and the Plcd3(mNab) mutations survive for several weeks and exhibit total alopecia associated with fragile hair shafts showing altered expression of some structural genes and shortened phases of proliferation in hair follicle matrix cells. CONCLUSIONS/SIGNIFICANCE: The Plcd3(mNab) mutation is a novel hypomorphic mutation of Plcd3. Our investigations suggest that Plcd1 and Plcd3 have synergistic effects on the murine hair follicle in specific regions of the body surface

    An Introduction to Sphingolipid Metabolism and Analysis by New Technologies

    Get PDF
    Sphingolipids (SP) are a complex class of molecules found in essentially all eukaryotes and some prokaryotes and viruses where they influence membrane structure, intracellular signaling, and interactions with the extracellular environment. Because of the combinatorial nature of their biosynthesis, there are thousands of SP subspecies varying in the lipid backbones and complex phospho- and glycoheadgroups. Therefore, comprehensive or “sphingolipidomic” analyses (structure-specific, quantitative analyses of all SP, or at least all members of a critical subset) are needed to know which and how much of these subspecies are present in a system as a step toward understanding their functions. Mass spectrometry and related novel techniques are able to quantify a small fraction, but nonetheless a substantial number, of SP and are beginning to provide information about their localization. This review summarizes the basic metabolism of SP and state-of-art mass spectrometric techniques that are producing insights into SP structure, metabolism, functions, and some of the dysfunctions of relevance to neuromedicine

    Preparation of organo-transition metal compounds

    No full text
    corecore