42 research outputs found

    Synaptic vesicle recycling is unaffected in the Ts65Dn mouse model of Down syndrome

    Get PDF
    Down syndrome (DS) is the most common genetic cause of intellectual disability, and arises from trisomy of human chromosome 21. Accumulating evidence from studies of both DS patient tissue and mouse models has suggested that synaptic dysfunction is a key factor in the disorder. The presence of several genes within the DS trisomy that are either directly or indirectly linked to synaptic vesicle (SV) endocytosis suggested that presynaptic dysfunction could underlie some of these synaptic defects. Therefore we determined whether SV recycling was altered in neurons from the Ts65Dn mouse, the best characterised model of DS to date. We found that SV exocytosis, the size of the SV recycling pool, clathrin-mediated endocytosis, activity-dependent bulk endocytosis and SV generation from bulk endosomes were all unaffected by the presence of the Ts65Dn trisomy. These results were obtained using battery of complementary assays employing genetically-encoded fluorescent reporters of SV cargo trafficking, and fluorescent and morphological assays of fluid-phase uptake in primary neuronal culture. The absence of presynaptic dysfunction in central nerve terminals of the Ts65Dn mouse suggests that future research should focus on the established alterations in excitatory / inhibitory balance as a potential route for future pharmacotherapy

    Human immunodeficiency virus type 1 glycoprotein gp120 reduces the levels of brain-derived neurotrophic factor in vivo: potential implication for neuronal cell death

    No full text
    Neuronal loss has been observed in post mortem brains of patients with human immunodeficiency virus type 1 (HIV-1). Experimental evidence has implicated HIV-1-derived envelope glycoprotein 120 (gp120) in the neuronal cell death observed in these patients. However, the intrinsic mechanisms by which gp120 causes neurotoxicity are still unknown. We have recently shown that the neurotoxic effect of gp120 in vitro is reduced by brain-derived neurotrophic factor (BDNF). We therefore tested the hypothesis that low levels of BDNF render neurons more sensitive to gp120. Gp120 was injected acutely into the striatum of BDNF heterozygous mice and wild-type littermates. BDNF heterozygous mice exhibited more apoptotic neurons in the striatum than wild-type mice, suggesting that BDNF is neuroprotective also in vivo. Because several neurodegenerative disorders are characterized by lack of trophic support, we tested the hypothesis that gp120 may cause apoptosis by reducing BDNF expression. Gp120 was injected acutely in the rat striatum and BDNF levels determined by a two-site immunoassay at various times after the injection. Gp120 elicited a dramatic decrease in BDNF protein levels by 24 h. Reduced BDNF levels were still present at 4 days. Cellular localization of BDNF immunoreactivity revealed that gp120 decreases BDNF immunoreactivity mainly in neuronal processes. This effect of gp120 precedes the peak of caspase-3 activation and neuronal cell death. We propose that one of the mechanisms whereby gp120 causes neurotoxicity is a reduction of the neurotrophic factor environment crucial for cell survival

    Human Immunodeficiency Virus Type 1 Protein gp120 Causes Neuronal Cell Death in the Rat Brain by Activating Caspases

    No full text
    Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system is associated with microglia activation and neuronal apoptosis, alterations that are also caused by the HIV-1 envelope glycoprotein 120 (gp120) alone. This study was undertaken to examine the onset of gp120 neurotoxicity, the type of cell death and which cells of the adult rat brain are more sensitive to the toxic action of gp120. Gp120 or vehicle were injected chronically (daily for 3 or 7 days) into the lateral ventricle. Magnetic resonance imaging revealed hypertensive areas in the cortical and hippocampal gray matter in gp120-treated rats 7-10 days after the first injection, suggesting vasogenic edema. This phenomenon was accompanied by an enlargement of the lateral and third ventricles. Immunohistochemical analyses were then carried out to examine the toxic effect of gp120 at a cellular level. Several markers of apoptosis, including activated caspase-3 were observed at both 3 and 7 days throughout brains of gp120-treated rats, especially in the cerebral cortex. In this area, most of the apoptotic cells exhibited a pyramidal shape and were Nissl positive, indicative of neurons. Few non-neuronal cells exhibited signs of apoptosis. The results of the present study support the notion that gp120 is neurotoxic in vivo and provide evidence that gp120 activates a caspase-dependent apoptotic pathway

    Unsupervised Performance of the CogState Brief Battery in the Brain Health Registry: Implications for Detecting Cognitive Decline.

    No full text
    IntroductionThe feasibility and validity of unsupervised, longitudinal brief computerized cognitive batteries is unknown.MethodsParticipants aged 56-90 (N = 19476) from the Brain Health Registry (BHR) completed the CogState Brief Battery (CBB) at 6-month intervals over a period of 5 years. We used linear mixed-effects models to assess whether cross-sectional and longitudinal performance on CBB within BHR was associated with demographic and cognitive characteristics. We also defined a group of CBB decliners based on subject-specific slopes and estimated associations between decliner status and participant characteristics.ResultsWe found weak associations between longitudinal change in CBB and participant characteristics. Cross-sectional CBB scores were significantly associated with participant characteristics such as age, gender, ethnicity, self-reported disease status, and memory concern. CBB decliners were more likely to self-report mild cognitive impairment (MCI) and memory concerns.DiscussionCross-sectional, remote CBB shows evidence of construct validity, but our results suggest that longitudinal assessment may not provide additional value for identifying those at risk for and with cognitive impairment
    corecore