281 research outputs found

    A nationwide survey to measure practice variation of catheterisation management in patients undergoing vaginal prolapse surgery

    Get PDF
    Urinary catheterisation following vaginal prolapse surgery causes inconvenience for patients, risk of urinary tract infections and potentially longer hospitalisation. Possibly, practice variation exists concerning diagnosis and management of abnormal postvoid residual (PVR) volume implying suboptimal treatment for certain subgroups. Nationwide questionnaire-based survey. Post-operatively, 77% performed transurethral indwelling catheterisation, 12% suprapubic catheterisation and 11% intermittent catheterisation. Catheterisation was applied 3 days (1-7 days) following anterior repair and 1 day (1-3 days) following all other procedures. The median cut-off point for abnormal PVR was 150 mL (range 50-250 mL). Treatment of abnormal PVR consisted mostly of prolonging transurethral indwelling catheterisation for 2 days (range 1-5 days; 57%), 29% by intermittent and 12% by suprapubic catheterisation. Antibiotics were administered by 21% either routinely or based on symptoms only. Due to insufficient evidence and suboptimal implementation of available evidence, practice variation in catheterisation regimens is hig

    Small Tympanic Membrane Perforations in the Inferior Quadrants Do Not Impact the Manubrium Vibration in Guinea Pigs

    Get PDF
    BACKGROUND: It has been believed that location of the perforation has a significant impact on hearing loss. However, recent studies have demonstrated that the perforation sites had no impact on hearing loss. We measured the velocity and pattern of the manubrium vibration in guinea pigs with intact and perforated eardrum using a laser Doppler vibrometer in order to determine the effects of different location perforations on the middle ear transfer functions. METHODS: Two bullas from 2 guinea pigs were used to determine stability of the umbo velocities, and 12 bullas from six guinea pigs to determine the effects of different location perforations on sound transmission. The manubrium velocity was measured at three points on the manubrium in the frequencies of 0.5-8 kHz before and after a perforation was made. The sites of perforations were in anterior-inferior (AI) quadrants of left ears and posterior-inferior (PI) quadrants of right ears. RESULTS: The manubrium vibration velocity losses were noticed in the perforated ears only below 1.5 kHz. The maximum velocity loss was about 7 dB at 500 Hz with the PI perforation. No significant difference in the velocity loss was found between AI and PI perforations. The average ratio of short process velocity to the umbo velocity was approximately 0.5 at all frequencies. No significant differences were found before and after perforation at all frequencies (p>0.05) except 7 kHz (p = 0.004) for both AI and PI perforations. CONCLUSIONS: The manubrium vibration velocity losses from eardrum perforation were frequency-dependent and the largest losses occur at low frequencies. Manubrium velocity losses caused by small acute inferior perforations in guinea pigs have no significant impact on middle ear sound transmission at any frequency tested. The manubrium vibration axis may be perpendicular to the manubrium below 8 kHz in guinea pigs

    Obliteration of radical cavities with autogenous cortical bone; long-term results

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the long-term surgical outcome(s) in patients who have undergone canal-wall-down operation with mastoid and epitympanic obliteration using autologous cortical bone chips, bone pate and meatally-based musculoperiosteal flap technique.</p> <p>Method</p> <p>Retrospective evaluation of seventy patients operated during 1986–1991 due to a cholesteatoma. An otomicroscopy was performed to evaluate the postoperative outer ear canal configuration with a modified Likert scale (1 – 4). The outer ear canal physical volume was assessed by tympanometry. The hearing outcome and a patient-filled questionnaire were also analyzed.</p> <p>Results</p> <p>The posterior wall results were 1.8 (± 0.9 SD) and the attic region 1.8 (± 0.9 SD) (ns., p > 0.05). These values show either no cavity formation or minor formation of a cavity, with a good functional result. The mean volume of the operated ear canal was 1.7 (± 0.5 SD) ml. The volume of the contralateral ear canal was 1.2 (± 0.3 SD) ml (*** p < 0.0001). A comparison of the current mean ABG to the preoperative mean ABG and to the ABG at one-year postoperatively, 5-years postoperatively or 10-years postoperatively showed no statistical significance (p > 0.05).</p> <p>Conclusion</p> <p>ABG does not significantly change in the long-term. The configuration of the cavity tends to change, however, the obliteration material is stable in the long-term and clinically significant cavitation rarely occurs.</p

    An Allosteric Mechanism for Switching between Parallel Tracks in Mammalian Sulfur Metabolism

    Get PDF
    Methionine (Met) is an essential amino acid that is needed for the synthesis of S-adenosylmethionine (AdoMet), the major biological methylating agent. Methionine used for AdoMet synthesis can be replenished via remethylation of homocysteine. Alternatively, homocysteine can be converted to cysteine via the transsulfuration pathway. Aberrations in methionine metabolism are associated with a number of complex diseases, including cancer, anemia, and neurodegenerative diseases. The concentration of methionine in blood and in organs is tightly regulated. Liver plays a key role in buffering blood methionine levels, and an interesting feature of its metabolism is that parallel tracks exist for the synthesis and utilization of AdoMet. To elucidate the molecular mechanism that controls metabolic fluxes in liver methionine metabolism, we have studied the dependencies of AdoMet concentration and methionine consumption rate on methionine concentration in native murine hepatocytes at physiologically relevant concentrations (40–400 µM). We find that both [AdoMet] and methionine consumption rates do not change gradually with an increase in [Met] but rise sharply (∼10-fold) in the narrow Met interval from 50 to 100 µM. Analysis of our experimental data using a mathematical model reveals that the sharp increase in [AdoMet] and the methionine consumption rate observed within the trigger zone are associated with metabolic switching from methionine conservation to disposal, regulated allosterically by switching between parallel pathways. This regulatory switch is triggered by [Met] and provides a mechanism for stabilization of methionine levels in blood over wide variations in dietary methionine intake

    Beyond the genetics of HDL:why is HDL cholesterol inversely related to cardiovascular disease?

    Get PDF
    There is unequivocal evidence that high-density lipoprotein (HDL) cholesterol levels in plasma are inversely associated with the risk of cardiovascular disease (CVD). Studies of families with inherited HDL disorders and genetic association studies in general (and patient) population samples have identified a large number of factors that control HDL cholesterol levels. However, they have not resolved why HDL cholesterol and CVD are inversely related. A growing body of evidence from nongenetic studies shows that HDL in patients at increased risk of CVD has lost its protective properties and that increasing the cholesterol content of HDL does not result in the desired effects. Hopefully, these insights can help improve strategies to successfully intervene in HDL metabolism. It is clear that there is a need to revisit the HDL hypothesis in an unbiased manner. True insights into the molecular mechanisms that regulate plasma HDL cholesterol and triglycerides or control HDL function could provide the handholds that are needed to develop treatment for, e.g., type 2 diabetes and the metabolic syndrome. Especially genome-wide association studies have provided many candidate genes for such studies. In this review we have tried to cover the main molecular studies that have been produced over the past few years. It is clear that we are only at the very start of understanding how the newly identified factors may control HDL metabolism. In addition, the most recent findings underscore the intricate relations between HDL, triglyceride, and glucose metabolism indicating that these parameters need to be studied simultaneously

    Formin1 Mediates the Induction of Dendritogenesis and Synaptogenesis by Neurogenin3 in Mouse Hippocampal Neurons

    Get PDF
    Neurogenin3, a proneural transcription factor controlled by Notch receptor, has been recently shown to regulate dendritogenesis and synaptogenesis in mouse hippocampal neurons. However, little is known about the molecular mechanisms involved in these actions of Ngn3. We have used a microarray analysis to identify Ngn3 regulated genes related with cytoskeleton dynamics. One of such genes is Fmn1, whose protein, Formin1, is associated with actin and microtubule cytoskeleton. Overexpression of the Fmn1 isoform-Ib in cultured mouse hippocampal neurons induced an increase in the number of primary dendrites and in the number of glutamatergic synaptic inputs at 4 days in vitro. The same changes were provoked by overexpression of Ngn3. In addition downregulation of Fmn1 by the use of Fmn1-siRNAs impaired such morphological and synaptic changes induced by Ngn3 overexpression in neurons. These results reveal a previously unknown involvement of Formin1 in dendritogenesis and synaptogenesis and indicate that this protein is a key component of the Ngn3 signaling pathway that controls neuronal differentiation

    Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence

    Get PDF
    Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico, have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession. We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous) at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season

    Serum levels of selenium and smoking habits at age 50 influence long term prostate cancer risk; a 34 year ULSAM follow-up

    Get PDF
    Background: Serum selenium level (s-Se) has been associated with prostate cancer (PrCa) risk. We investigated the relation between s-Se, smoking and non-screening detected PrCa and explored if polymorphisms in two DNA repair genes: OGG1 and MnSOD, influenced any effect of s-Se. Methods: ULSAM, a population based Swedish male cohort (n = 2322) investigated at age 50 for s-Se and s-Se influencing factors: serum cholesterol, erythrocyte sedimentation rate and smoking habits. At age 71 a subcohort, (n = 1005) was genotyped for OGG1 and MnSOD polymorphisms. Results: In a 34-year-follow-up, national registries identified 208 PrCa cases further confirmed in medical records. Participants with s-Se in the upper tertile had a non-significantly lower risk of PrCa. Smokers with s-Se in the two lower tertiles (&lt;= 80 mu g/L) experienced a higher cumulative incidence of PrCa than smokers in the high selenium tertile (Hazard Ratio 2.39; 95% CI: 1.09-5.25). A high tertile selenium level in combination with non-wt rs125701 of the OGG1 gene in combination with smoking status or rs4880 related variation of MnSOD gene appeared to protect from PrCa. Conclusions: S-Se levels and smoking habits influence long-term risk of PrCa. Smoking as a risk factor for PrCa in men with low s-Se is relevant to explore further. Exploratory analyses of variations in OGG1 and MnSOD genes indicate that hypotheses about patterns of exposure to selenium and smoking combined with data on genetic variation in genes involved in DNA repair can be valuable to pursue
    corecore