71 research outputs found

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    Comparative ICE Genomics: Insights into the Evolution of the SXT/R391 Family of ICEs

    Get PDF
    Integrating and conjugative elements (ICEs) are one of the three principal types of self-transmissible mobile genetic elements in bacteria. ICEs, like plasmids, transfer via conjugation; but unlike plasmids and similar to many phages, these elements integrate into and replicate along with the host chromosome. Members of the SXT/R391 family of ICEs have been isolated from several species of gram-negative bacteria, including Vibrio cholerae, the cause of cholera, where they have been important vectors for disseminating genes conferring resistance to antibiotics. Here we developed a plasmid-based system to capture and isolate SXT/R391 ICEs for sequencing. Comparative analyses of the genomes of 13 SXT/R391 ICEs derived from diverse hosts and locations revealed that they contain 52 perfectly syntenic and nearly identical core genes that serve as a scaffold capable of mobilizing an array of variable DNA. Furthermore, selection pressure to maintain ICE mobility appears to have restricted insertions of variable DNA into intergenic sites that do not interrupt core functions. The variable genes confer diverse element-specific phenotypes, such as resistance to antibiotics. Functional analysis of a set of deletion mutants revealed that less than half of the conserved core genes are required for ICE mobility; the functions of most of the dispensable core genes are unknown. Several lines of evidence suggest that there has been extensive recombination between SXT/R391 ICEs, resulting in re-assortment of their respective variable gene content. Furthermore, our analyses suggest that there may be a network of phylogenetic relationships among sequences found in all types of mobile genetic elements

    PCR-Based Identification of Klebsiella pneumoniae subsp. rhinoscleromatis, the Agent of Rhinoscleroma

    Get PDF
    Rhinoscleroma is a chronic granulomatous infection of the upper airways caused by the bacterium Klebsiella pneumoniae subsp. rhinoscleromatis. The disease is endemic in tropical and subtropical areas, but its diagnosis remains difficult. As a consequence, and despite available antibiotherapy, some patients evolve advanced stages that can lead to disfiguration, severe respiratory impairment and death by anoxia. Because identification of the etiologic agent is crucial for the definitive diagnosis of the disease, the aim of this study was to develop two simple PCR assays. We took advantage of the fact that all Klebsiella pneumoniae subsp. rhinoscleromatis isolates are (i) of capsular serotype K3; and (ii) belong to a single clone with diagnostic single nucleotide polymorphisms (SNP). The complete sequence of the genomic region comprising the capsular polysaccharide synthesis (cps) gene cluster was determined. Putative functions of the 21 genes identified were consistent with the structure of the K3 antigen. The K3-specific sequence of gene Kr11509 (wzy) was exploited to set up a PCR test, which was positive for 40 K3 strains but negative when assayed on the 76 other Klebsiella capsular types. Further, to discriminate Klebsiella pneumoniae subsp. rhinoscleromatis from other K3 Klebsiella strains, a specific PCR assay was developed based on diagnostic SNPs in the phosphate porin gene phoE. This work provides rapid and simple molecular tools to confirm the diagnostic of rhinoscleroma, which should improve patient care as well as knowledge on the prevalence and epidemiology of rhinoscleroma

    The Context of Current Content Analysis of Gender Roles: An Introduction to a Special Issue

    Get PDF
    The aim of this paper is to provide context for the quantitative content analyses of gender roles that are to be included in both parts of this special issue. First, a timeline of historical uses of the content analysis methodology is presented. Second, research objectives that frequently drive content analysis of gender roles are described; these include: to support feminist claims, to compare media with real life, to predict effects on audiences, and to detect effects of media producers on content. Third, previous content analyses published in Sex Roles and other gender-focused journals are reviewed and categorized in terms of medium, genre, time span, gender, and nationality. Finally, contributions of each of the articles in this special issue are outlined

    Emerging infectious disease implications of invasive mammalian species : the greater white-toothed shrew (Crocidura russula) is associated with a novel serovar of pathogenic Leptospira in Ireland

    Get PDF
    The greater white-toothed shrew (Crocidura russula) is an invasive mammalian species that was first recorded in Ireland in 2007. It currently occupies an area of approximately 7,600 km2 on the island. C. russula is normally distributed in Northern Africa and Western Europe, and was previously absent from the British Isles. Whilst invasive species can have dramatic and rapid impacts on faunal and floral communities, they may also be carriers of pathogens facilitating disease transmission in potentially naive populations. Pathogenic leptospires are endemic in Ireland and a significant cause of human and animal disease. From 18 trapped C. russula, 3 isolates of Leptospira were cultured. However, typing of these isolates by standard serological reference methods was negative, and suggested an, as yet, unidentified serovar. Sequence analysis of 16S ribosomal RNA and secY indicated that these novel isolates belong to Leptospira alstonii, a unique pathogenic species of which only 7 isolates have been described to date. Earlier isolations were limited geographically to China, Japan and Malaysia, and this leptospiral species had not previously been cultured from mammals. Restriction enzyme analysis (REA) further confirms the novelty of these strains since no similar patterns were observed with a reference database of leptospires. As with other pathogenic Leptospira species, these isolates contain lipL32 and do not grow in the presence of 8-azagunaine; however no evidence of disease was apparent after experimental infection of hamsters. These isolates are genetically related to L. alstonii but have a novel REA pattern; they represent a new serovar which we designate as serovar Room22. This study demonstrates that invasive mammalian species act as bridge vectors of novel zoonotic pathogens such as Leptospira

    Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales)

    Get PDF
    BACKGROUND: The epsilon proteobacteria, which include many important human pathogens, are presently recognized solely on the basis of their branching in rRNA trees. No unique molecular or biochemical characteristics specific for this group are known. RESULTS: Comparative analyses of proteins in the genomes of Wolinella succinogenes DSM 1740 and Campylobacter jejuni RM1221 against all available sequences have identified a large number of proteins that are unique to various epsilon proteobacteria (Campylobacterales), but whose homologs are not detected in other organisms. Of these proteins, 49 are uniquely found in nearly all sequenced epsilon-proteobacteria (viz. Helicobacter pylori (26695 and J99), H. hepaticus, C. jejuni (NCTC 11168, RM1221, HB93-13, 84-25, CF93-6, 260.94, 11168 and 81-176), C. lari, C. coli, C. upsaliensis, C. fetus, W. succinogenes DSM 1740 and Thiomicrospira denitrificans ATCC 33889), 11 are unique for the Wolinella and Helicobacter species (i.e. Helicobacteraceae family) and many others are specific for either some or all of the species within the Campylobacter genus. The primary sequences of many of these proteins are highly conserved and provide novel resources for diagnostics and therapeutics. We also report four conserved indels (i.e. inserts or deletions) in widely distributed proteins (viz. B subunit of exinuclease ABC, phenylalanyl-tRNA synthetase, RNA polymerase β '-subunit and FtsH protein) that are specific for either all epsilon proteobacteria or different subgroups. In addition, a rare genetic event that caused fusion of the genes for the largest subunits of RNA polymerase (rpoB and rpoC) in Wolinella and Helicobacter is also described. The inter-relationships amongst Campylobacterales as deduced from these molecular signatures are in accordance with the phylogenetic trees based on the 16S rRNA and concatenated sequences for nine conserved proteins. CONCLUSION: These molecular signatures provide novel tools for identifying and circumscribing species from the Campylobacterales order and its subgroups in molecular terms. Although sequence information for these signatures is presently limited to Campylobacterales species, it is likely that many of them will also be found in other epsilon proteobacteria. Functional studies on these proteins and conserved indels should reveal novel biochemical or physiological characteristics that are unique to these groups of epsilon proteobacteria

    Teaching: Natural or Cultural?

    Get PDF
    In this chapter I argue that teaching, as we now understand the term, is historically and cross-culturally very rare. It appears to be unnecessary to transmit culture or to socialize children. Children are, on the other hand, primed by evolution to be avid observers, imitators, players and helpers—roles that reveal the profoundly autonomous and self-directed nature of culture acquisition (Lancy in press a). And yet, teaching is ubiquitous throughout the modern world—at least among the middle to upper class segment of the population. This ubiquity has led numerous scholars to argue for the universality and uniqueness of teaching as a characteristically human behavior. The theme of this chapter is that this proposition is unsustainable. Teaching is largely a result of recent cultural changes and the emergence of modern economies, not evolution

    Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components

    No full text
    Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the starting furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. Antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines

    Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components

    No full text
    Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the starting furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. Antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines
    corecore