485 research outputs found

    Narrative Review: Impairing Emotional Outbursts: What They Are and What We Should Do About Them

    Get PDF
    Objective: Impairing emotional outbursts, defined by extreme anger or distress in response to relatively ordinary frustrations and disappointments, impact all mental health care systems, emergency departments, schools, and juvenile justice programs. However, the prevalence, outcome, and impact of outbursts are difficult to quantify because they are transdiagnostic and not explicitly defined by current diagnostic nosology. Research variably addresses outbursts under the rubrics of tantrums, anger, irritability, aggression, rage attacks, or emotional and behavioral dysregulation. Consistent methods for identifying and assessing impairing emotional outbursts across development or systems of care are lacking. Method: The American Academy of Child and Adolescent Psychiatry Presidential Task Force (2019-2021) conducted a narrative review addressing impairing emotional outbursts within the limitations of the existing literature and independent of diagnosis. Results: Extrapolating from the existing literature, best estimates suggest that outbursts occur in 4%-10% of community children (preschoolers through adolescents). Impairing emotional outbursts may respond to successful treatment of the primary disorder, especially for some children with attention-deficit/hyperactivity disorder whose medications have been optimized. However, outbursts are generally multi-determined and often represent maladaptive or deficient coping strategies and responses. Conclusion: Evidence-based strategies are necessary to address factors that trigger, reinforce, or excuse the behaviors and to enhance problem-solving skills. Currently available interventions yield only modest effect sizes for treatment effect. More specific definitions and measures are needed to track and quantify outbursts and to design and assess the effectiveness of interventions. Better treatments are clearly needed

    Geographic range did not confer resilience to extinction in terrestrial vertebrates at the end-Triassic crisis

    Get PDF
    Rates of extinction vary greatly through geological time, with losses particularly concentrated in mass extinctions. Species duration at other times varies greatly, but the reasons for this are unclear. Geographical range correlates with lineage duration amongst marine invertebrates, but it is less clear how far this generality extends to other groups in other habitats. It is also unclear whether a wide geographical distribution makes groups more likely to survive mass extinctions. Here we test for extinction selectivity amongst terrestrial vertebrates across the end-Triassic event. We demonstrate that terrestrial vertebrate clades with larger geographical ranges were more resilient to extinction than those with smaller ranges throughout the Triassic and Jurassic. However, this relationship weakened with increasing proximity to the end-Triassic mass extinction, breaking down altogether across the event itself. We demonstrate that these findings are not a function of sampling biases; a perennial issue in studies of this kind

    Adult Neurogenesis: Ultrastructure of a Neurogenic Niche and Neurovascular Relationships

    Get PDF
    The first-generation precursors producing adult-born neurons in the crayfish (Procambarus clarkii) brain reside in a specialized niche located on the ventral surface of the brain. In the present work, we have explored the organization and ultrastructure of this neurogenic niche, using light-level, confocal and electron microscopic approaches. Our goals were to define characteristics of the niche microenvironment, examine the morphological relationships between the niche and the vasculature and observe specializations at the boundary between the vascular cavity located centrally in the niche. Our results show that the niche is almost fully encapsulated by blood vessels, and that cells in the vasculature come into contact with the niche. This analysis also characterizes the ultrastructure of the cell types in the niche. The Type I niche cells are by far the most numerous, and are the only cell type present superficially in the most ventral cell layers of the niche. More dorsally, Type I cells are intermingled with Types II, III and IV cells, which are observed far less frequently. Type I cells have microvilli on their apical cell surfaces facing the vascular cavity, as well as junctional complexes between adjacent cells, suggesting a role in regulating transport from the blood into the niche cells. These studies demonstrate a close relationship between the neurogenic niche and vascular system in P. clarkii. Furthermore, the specializations of niche cells contacting the vascular cavity are also typical of the interface between the blood/cerebrospinal fluid (CSF)-brain barriers of vertebrates, including cells of the subventricular zone (SVZ) producing new olfactory interneurons in mammals. These data indicate that tissues involved in producing adult-born neurons in the crayfish brain use strategies that may reflect fundamental mechanisms preserved in an evolutionarily broad range of species, as proposed previously. The studies described here extend our understanding of neurovascular relationships in the brain of P. clarkii by characterizing the organization and ultrastructure of the neurogenic niche and associated vascular tissues

    Regulation of Glucose Homeostasis by KSR1 and MARK2

    Get PDF
    Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1-/- mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1-/- mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2-/-ksr1-/- (DKO) mice were compared to wild type, mark2-/-, and ksr1-/- mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2-/- mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1-/- mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism

    Bio-Benchmarking of Electronic Nose Sensors

    Get PDF
    BACKGROUND:Electronic noses, E-Noses, are instruments designed to reproduce the performance of animal noses or antennae but generally they cannot match the discriminating power of the biological original and have, therefore, been of limited utility. The manner in which odorant space is sampled is a critical factor in the performance of all noses but so far it has been described in detail only for the fly antenna. METHODOLOGY:Here we describe how a set of metal oxide (MOx) E-Nose sensors, which is the most commonly used type, samples odorant space and compare it with what is known about fly odorant receptors (ORs). PRINCIPAL FINDINGS:Compared with a fly's odorant receptors, MOx sensors from an electronic nose are on average more narrowly tuned but much more highly correlated with each other. A set of insect ORs can therefore sample broader regions of odorant space independently and redundantly than an equivalent number of MOx sensors. The comparison also highlights some important questions about the molecular nature of fly ORs. CONCLUSIONS:The comparative approach generates practical learnings that may be taken up by solid-state physicists or engineers in designing new solid-state electronic nose sensors. It also potentially deepens our understanding of the performance of the biological system

    Lactate Produced by Glycogenolysis in Astrocytes Regulates Memory Processing

    Get PDF
    When administered either systemically or centrally, glucose is a potent enhancer of memory processes. Measures of glucose levels in extracellular fluid in the rat hippocampus during memory tests reveal that these levels are dynamic, decreasing in response to memory tasks and loads; exogenous glucose blocks these decreases and enhances memory. The present experiments test the hypothesis that glucose enhancement of memory is mediated by glycogen storage and then metabolism to lactate in astrocytes, which provide lactate to neurons as an energy substrate. Sensitive bioprobes were used to measure brain glucose and lactate levels in 1-sec samples. Extracellular glucose decreased and lactate increased while rats performed a spatial working memory task. Intrahippocampal infusions of lactate enhanced memory in this task. In addition, pharmacological inhibition of astrocytic glycogenolysis impaired memory and this impairment was reversed by administration of lactate or glucose, both of which can provide lactate to neurons in the absence of glycogenolysis. Pharmacological block of the monocarboxylate transporter responsible for lactate uptake into neurons also impaired memory and this impairment was not reversed by either glucose or lactate. These findings support the view that astrocytes regulate memory formation by controlling the provision of lactate to support neuronal functions

    Discovering local patterns of co - evolution: computational aspects and biological examples

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-evolution is the process in which two (or more) sets of orthologs exhibit a similar or correlative pattern of evolution. Co-evolution is a powerful way to learn about the functional interdependencies between sets of genes and cellular functions and to predict physical interactions. More generally, it can be used for answering fundamental questions about the evolution of biological systems.</p> <p>Orthologs that exhibit a strong signal of co-evolution in a certain part of the evolutionary tree may show a mild signal of co-evolution in other branches of the tree. The major reasons for this phenomenon are noise in the biological input, genes that gain or lose functions, and the fact that some measures of co-evolution relate to rare events such as positive selection. Previous publications in the field dealt with the problem of finding sets of genes that co-evolved along an entire underlying phylogenetic tree, without considering the fact that often co-evolution is local.</p> <p>Results</p> <p>In this work, we describe a new set of biological problems that are related to finding patterns of <it>local </it>co-evolution. We discuss their computational complexity and design algorithms for solving them. These algorithms outperform other bi-clustering methods as they are designed specifically for solving the set of problems mentioned above.</p> <p>We use our approach to trace the co-evolution of fungal, eukaryotic, and mammalian genes at high resolution across the different parts of the corresponding phylogenetic trees. Specifically, we discover regions in the fungi tree that are enriched with positive evolution. We show that metabolic genes exhibit a remarkable level of co-evolution and different patterns of co-evolution in various biological datasets.</p> <p>In addition, we find that protein complexes that are related to gene expression exhibit non-homogenous levels of co-evolution across different parts of the <it>fungi </it>evolutionary line. In the case of mammalian evolution, signaling pathways that are related to <it>neurotransmission </it>exhibit a relatively higher level of co-evolution along the <it>primate </it>subtree.</p> <p>Conclusions</p> <p>We show that finding local patterns of co-evolution is a computationally challenging task and we offer novel algorithms that allow us to solve this problem, thus opening a new approach for analyzing the evolution of biological systems.</p

    Neural correlates of socio-emotional perception in 22q11.2 deletion syndrome.

    Get PDF
    BACKGROUND: Social impairments are described as a common feature of the 22q11.2 deletion syndrome (22q11DS). However, the neural correlates underlying these impairments are largely unknown in this population. In this study, we investigated neural substrates of socio-emotional perception. METHODS: We used event-related functional magnetic resonance imaging (fMRI) to explore neural activity in individuals with 22q11DS and healthy controls during the visualization of stimuli varying in social (social or non-social) or emotional (positive or negative valence) content. RESULTS: Neural hyporesponsiveness in regions of the default mode network (inferior parietal lobule, precuneus, posterior and anterior cingulate cortex and frontal regions) in response to social versus non-social images was found in the 22q11DS population compared to controls. A similar pattern of activation for positive and negative emotional processing was observed in the two groups. No correlation between neural activation and social functioning was observed in patients with the 22q11DS. Finally, no social × valence interaction impairment was found in patients. CONCLUSIONS: Our results indicate atypical neural correlates of social perception in 22q11DS that appear to be independent of valence processing. Abnormalities in the social perception network may lead to social impairments observed in 22q11DS individuals

    The Sail-Backed Reptile Ctenosauriscus from the Latest Early Triassic of Germany and the Timing and Biogeography of the Early Archosaur Radiation

    Get PDF
    Background Archosaurs (birds, crocodilians and their extinct relatives including dinosaurs) dominated Mesozoic continental ecosystems from the Late Triassic onwards, and still form a major component of modern ecosystems (>10,000 species). The earliest diverse archosaur faunal assemblages are known from the Middle Triassic (c. 244 Ma), implying that the archosaur radiation began in the Early Triassic (252.3–247.2 Ma). Understanding of this radiation is currently limited by the poor early fossil record of the group in terms of skeletal remains. Methodology/Principal Findings We redescribe the anatomy and stratigraphic position of the type specimen of Ctenosauriscus koeneni (Huene), a sail-backed reptile from the Early Triassic (late Olenekian) Solling Formation of northern Germany that potentially represents the oldest known archosaur. We critically discuss previous biomechanical work on the ‘sail’ of Ctenosauriscus, which is formed by a series of elongated neural spines. In addition, we describe Ctenosauriscus-like postcranial material from the earliest Middle Triassic (early Anisian) Röt Formation of Waldhaus, southwestern Germany. Finally, we review the spatial and temporal distribution of the earliest archosaur fossils and their implications for understanding the dynamics of the archosaur radiation. Conclusions/Significance Comprehensive numerical phylogenetic analyses demonstrate that both Ctenosauriscus and the Waldhaus taxon are members of a monophyletic grouping of poposauroid archosaurs, Ctenosauriscidae, characterised by greatly elongated neural spines in the posterior cervical to anterior caudal vertebrae. The earliest archosaurs, including Ctenosauriscus, appear in the body fossil record just prior to the Olenekian/Anisian boundary (c. 248 Ma), less than 5 million years after the Permian–Triassic mass extinction. These earliest archosaur assemblages are dominated by ctenosauriscids, which were broadly distributed across northern Pangea and which appear to have been the first global radiation of archosaurs
    corecore