424 research outputs found
Binder’s Syndrome
Binder's Syndrome also known as Maxillo-Nasal Dysplasia is a developmental disorder primarily affecting the anterior part of the maxilla and nasal complex (nose and jaw). It is a rare disorder and the causes are unclear. It is an uncommon condition characterized by a retruded mid-face with an extremely flat nose. Hereditary factors and vitamin D deficiency during embryonic growth have been researched as possible causes. Morphological characteristics of the syndrome are of fundamental importance for the correct diagnosis and treatment planning of these patients. We hereby report to you a rare case of Binder's syndrome with clinical, radiographic features and discussed the treatment options
Soil properties and biological activity as influenced by nutrient management in rice- fallow sorghum
A field experiment was conducted to observe the effect of inorganics, bio-fertilizers and FYM applied to rice-fallow sorghum on soil properties and biological activity at Agricultural College Farm, Bapatla during 2012. Soil samples were collected at flowering and harvest of the crop and were analysed for bulk density (BD), porosity, pH, electrical conductivity (EC), organic carbon, N, P, K and micronutrients by standard methods. Results indicated that the soil properties viz., bulk density, porosity, pH and EC were not markedly influenced by the imposed treatments, while significantly high organic carbon was recorded in FYM treated plots. There was a significant influence of the treatments on available nitrogen and phosphorus, but not on potassium. Among micronutrients (Cu, Zn, Mn and Fe), the treatmental influence was significantly related to Fe only. Addition of inorganics in combination with organics and bio-fertilizers proved to be more efficient in improving the microbial population and enzyme activities (urease and dehydrogenase) significantly.Int. J. Agril. Res. Innov. & Tech. 5 (1): 10-14, June, 201
Beyond the standard seesaw: neutrino masses from Kahler operators and broken supersymmetry
We investigate supersymmetric scenarios in which neutrino masses are
generated by effective d=6 operators in the Kahler potential, rather than by
the standard d=5 superpotential operator. First, we discuss some general
features of such effective operators, also including SUSY-breaking insertions,
and compute the relevant renormalization group equations. Contributions to
neutrino masses arise at low energy both at the tree level and through finite
threshold corrections. In the second part we present simple explicit
realizations in which those Kahler operators arise by integrating out heavy
SU(2)_W triplets, as in the type II seesaw. Distinct scenarios emerge,
depending on the mechanism and the scale of SUSY-breaking mediation. In
particular, we propose an appealing and economical picture in which the heavy
seesaw mediators are also messengers of SUSY breaking. In this case, strong
correlations exist among neutrino parameters, sparticle and Higgs masses, as
well as lepton flavour violating processes. Hence, this scenario can be tested
at high-energy colliders, such as the LHC, and at lower energy experiments that
measure neutrino parameters or search for rare lepton decays.Comment: LaTeX, 34 pages; some corrections in Section
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Four Generations: SUSY and SUSY Breaking
We revisit four generations within the context of supersymmetry. We compute
the perturbativity limits for the fourth generation Yukawa couplings and show
that if the masses of the fourth generation lie within reasonable limits of
their present experimental lower bounds, it is possible to have perturbativity
only up to scales around 1000 TeV. Such low scales are ideally suited to
incorporate gauge mediated supersymmetry breaking, where the mediation scale
can be as low as 10-20 TeV. The minimal messenger model, however, is highly
constrained. While lack of electroweak symmetry breaking rules out a large part
of the parameter space, a small region exists, where the fourth generation stau
is tachyonic. General gauge mediation with its broader set of boundary
conditions is better suited to accommodate the fourth generation.Comment: 27 pages, 5 figure
Circulating Microbial Products and Acute Phase Proteins as Markers of Pathogenesis in Lymphatic Filarial Disease
Lymphatic filariasis can be associated with development of serious pathology in the form of lymphedema, hydrocele, and elephantiasis in a subset of infected patients. Dysregulated host inflammatory responses leading to systemic immune activation are thought to play a central role in filarial disease pathogenesis. We measured the plasma levels of microbial translocation markers, acute phase proteins, and inflammatory cytokines in individuals with chronic filarial pathology with (CP Ag+) or without (CP Ag−) active infection; with clinically asymptomatic infections (INF); and in those without infection (endemic normal [EN]). Comparisons between the two actively infected groups (CP Ag+ compared to INF) and those without active infection (CP Ag− compared to EN) were used preliminarily to identify markers of pathogenesis. Thereafter, we tested for group effects among all the four groups using linear models on the log transformed responses of the markers. Our data suggest that circulating levels of microbial translocation products (lipopolysaccharide and LPS-binding protein), acute phase proteins (haptoglobin and serum amyloid protein-A), and inflammatory cytokines (IL-1β, IL-12, and TNF-α) are associated with pathogenesis of disease in lymphatic filarial infection and implicate an important role for circulating microbial products and acute phase proteins
Linear, Deterministic, and Order-Invariant Initialization Methods for the K-Means Clustering Algorithm
Over the past five decades, k-means has become the clustering algorithm of
choice in many application domains primarily due to its simplicity, time/space
efficiency, and invariance to the ordering of the data points. Unfortunately,
the algorithm's sensitivity to the initial selection of the cluster centers
remains to be its most serious drawback. Numerous initialization methods have
been proposed to address this drawback. Many of these methods, however, have
time complexity superlinear in the number of data points, which makes them
impractical for large data sets. On the other hand, linear methods are often
random and/or sensitive to the ordering of the data points. These methods are
generally unreliable in that the quality of their results is unpredictable.
Therefore, it is common practice to perform multiple runs of such methods and
take the output of the run that produces the best results. Such a practice,
however, greatly increases the computational requirements of the otherwise
highly efficient k-means algorithm. In this chapter, we investigate the
empirical performance of six linear, deterministic (non-random), and
order-invariant k-means initialization methods on a large and diverse
collection of data sets from the UCI Machine Learning Repository. The results
demonstrate that two relatively unknown hierarchical initialization methods due
to Su and Dy outperform the remaining four methods with respect to two
objective effectiveness criteria. In addition, a recent method due to Erisoglu
et al. performs surprisingly poorly.Comment: 21 pages, 2 figures, 5 tables, Partitional Clustering Algorithms
(Springer, 2014). arXiv admin note: substantial text overlap with
arXiv:1304.7465, arXiv:1209.196
Sparticle mass spectra from SU(5) SUSY GUT models with Yukawa coupling unification
Supersymmetric grand unified models based on the gauge group SU(5) often
require in addition to gauge coupling unification, the unification of b-quark
and -lepton Yukawa couplings. We examine SU(5) SUSY GUT parameter space
under the condition of Yukawa coupling unification using 2-loop MSSM
RGEs including full 1-loop threshold effects. The Yukawa-unified solutions
break down into two classes. Solutions with low tan\beta ~3-11 are
characterized by gluino mass ~1-4 TeV and squark mass ~1-5 TeV. Many of these
solutions would be beyond LHC reach, although they contain a light Higgs scalar
with mass <123 GeV and so may be excluded should the LHC Higgs hint persist.
The second class of solutions occurs at large tan\beta ~35-60, and are a subset
of unified solutions. Constraining only unification to ~5%
favors a rather light gluino with mass ~0.5-2 TeV, which should ultimately be
accessible to LHC searches. While our unified solutions can be
consistent with a picture of neutralino-only cold dark matter, invoking
additional moduli or Peccei-Quinn superfields can allow for all of our
Yukawa-unified solutions to be consistent with the measured dark matter
abundance.Comment: 19 pages, 5 figures, 1 table, PDFLate
Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms
Baumbach J, Rahmann S, Tauch A. Reliable transfer of transcriptional gene regulatory networks between taxonomically related organisms. BMC Systems Biology. 2009;3(1):8.Background: Transcriptional regulation of gene activity is essential for any living organism. Transcription factors therefore recognize specific binding sites within the DNA to regulate the expression of particular target genes. The genome-scale reconstruction of the emerging regulatory networks is important for biotechnology and human medicine but cost-intensive, time-consuming, and impossible to perform for any species separately. By using bioinformatics methods one can partially transfer networks from well-studied model organisms to closely related species. However, the prediction quality is limited by the low level of evolutionary conservation of the transcription factor binding sites, even within organisms of the same genus. Results: Here we present an integrated bioinformatics workflow that assures the reliability of transferred gene regulatory networks. Our approach combines three methods that can be applied on a large-scale: re-assessment of annotated binding sites, subsequent binding site prediction, and homology detection. A gene regulatory interaction is considered to be conserved if (1) the transcription factor, (2) the adjusted binding site, and (3) the target gene are conserved. The power of the approach is demonstrated by transferring gene regulations from the model organism Corynebacterium glutamicum to the human pathogens C. diphtheriae, C. jeikeium, and the biotechnologically relevant C. efficiens. For these three organisms we identified reliable transcriptional regulations for similar to 40% of the common transcription factors, compared to similar to 5% for which knowledge was available before. Conclusion: Our results suggest that trustworthy genome-scale transfer of gene regulatory networks between organisms is feasible in general but still limited by the level of evolutionary conservation
- …