604 research outputs found

    Evolutionary Reduction of the First Thoracic Limb in Butterflies

    Get PDF
    Members of the diverse butterfly families Nymphalidae (brush-footed butterflies) and Riodinidae (metalmarks) have reduced first thoracic limbs and only use two pairs of legs for walking. In order to address questions about the detailed morphology and evolutionary origins of these reduced limbs, the three thoracic limbs of 13 species of butterflies representing all six butterfly families were examined and measured, and ancestral limb sizes were reconstructed for males and females separately. Differences in limb size across butterflies involve changes in limb segment size rather than number of limb segments. Reduction of the first limb in both nymphalids and riodinids appears particularly extensive in the femur, but the evolution of these reduced limbs is suggested to be a convergent evolutionary event. Possible developmental differences as well as ecological factors driving the evolution of reduced limbs are discussed

    Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds

    Get PDF
    We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS3_3. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.Comment: v3:79p, minor clarifications and references adde

    Microdissection: A method developed to investigate mechanisms involved in transmissible spongiform encephalopathy pathogenesis

    Get PDF
    BACKGROUND: The transmissible spongiform encephalopathies (TSEs) are a group of neurodegenerative diseases affecting both human and animals. The neuroanatomical changes which occur in the central nervous system (CNS) of TSE infected animals include vacuolation, gliosis, neuronal loss and the deposition of a disease specific protein, PrP(Sc). Experimental murine models of scrapie, a TSE of sheep, have revealed that pathology may be confined to specific brain areas with targeting of particular neuronal subsets depending on route of injection and scrapie isolate. To assess the biochemical changes which are taking place in these targeted areas it was necessary to develop a reliable sampling procedure (microdissection) which could be used for a variety of tests such as western blotting and magnetic resonance spectroscopy. METHODS: The method described is for the microdissection of murine brains. To assess the usefulness of this dissection technique for producing similar sample types for analysis by various down-stream biochemical techniques, the areas dissected were analysed for PrP(Sc )by western blotting and compared to immunocytochemical (ICC) techniques. RESULTS: Results show that the method generates samples yielding a consistent protein content which can be analysed for PrP(Sc). The areas in which PrP(Sc )is found by western blotting compares well with localisation visualised by immunocytochemistry. CONCLUSION: The microdisssection method described can be used to generate samples suitable for a range of biochemical techniques. Using these samples a range of assays can be carried out which will help to elucidate the molecular and cellular mechanisms underlying TSE pathogenesis. The method would also be useful for any study requiring the investigation of discrete areas within the murine brain

    A Novel Laser Vaccine Adjuvant Increases the Motility of Antigen Presenting Cells

    Get PDF
    Background Development of a potent vaccine adjuvant without introduction of any side effects remains an unmet challenge in the field of the vaccine research. Methodology/Principal Findings We found that laser at a specific setting increased the motility of antigen presenting cells (APCs) and immune responses, with few local or systemic side effects. This laser vaccine adjuvant (LVA) effect was induced by brief illumination of a small area of the skin or muscle with a nondestructive, 532 nm green laser prior to intradermal (i.d.) or intramuscular (i.m.) administration of vaccines at the site of laser illumination. The pre-illumination accelerated the motility of APCs as shown by intravital confocal microscopy, leading to sufficient antigen (Ag)-uptake at the site of vaccine injection and transportation of the Ag-captured APCs to the draining lymph nodes. As a result, the number of Ag+ dendritic cells (DCs) in draining lymph nodes was significantly higher in both the 1° and 2° draining lymph nodes in the presence than in the absence of LVA. Laser-mediated increases in the motility and lymphatic transportation of APCs augmented significantly humoral immune responses directed against a model vaccine ovalbumin (OVA) or influenza vaccine i.d. injected in both primary and booster vaccinations as compared to the vaccine itself. Strikingly, when the laser was delivered by a hair-like diffusing optical fiber into muscle, laser illumination greatly boosted not only humoral but also cell-mediated immune responses provoked by i.m. immunization with OVA relative to OVA alone. Conclusion/Significance The results demonstrate the ability of this safe LVA to augment both humoral and cell-mediated immune responses. In comparison with all current vaccine adjuvants that are either chemical compounds or biological agents, LVA is novel in both its form and mechanism; it is risk-free and has distinct advantages over traditional vaccine adjuvants.National Institutes of Health (U.S.) (grant AI070785)National Institutes of Health (U.S.) (grant RC1 DA028378)Bill & Melinda Gates Foundation (Grand Challenges Explorations grant # 53273)Boston BioCom (Firm) (Sponsored Research agreement grant #2008A25652

    Mesoscopic organization reveals the constraints governing C. elegans nervous system

    Get PDF
    One of the biggest challenges in biology is to understand how activity at the cellular level of neurons, as a result of their mutual interactions, leads to the observed behavior of an organism responding to a variety of environmental stimuli. Investigating the intermediate or mesoscopic level of organization in the nervous system is a vital step towards understanding how the integration of micro-level dynamics results in macro-level functioning. In this paper, we have considered the somatic nervous system of the nematode Caenorhabditis elegans, for which the entire neuronal connectivity diagram is known. We focus on the organization of the system into modules, i.e., neuronal groups having relatively higher connection density compared to that of the overall network. We show that this mesoscopic feature cannot be explained exclusively in terms of considerations, such as optimizing for resource constraints (viz., total wiring cost) and communication efficiency (i.e., network path length). Comparison with other complex networks designed for efficient transport (of signals or resources) implies that neuronal networks form a distinct class. This suggests that the principal function of the network, viz., processing of sensory information resulting in appropriate motor response, may be playing a vital role in determining the connection topology. Using modular spectral analysis, we make explicit the intimate relation between function and structure in the nervous system. This is further brought out by identifying functionally critical neurons purely on the basis of patterns of intra- and inter-modular connections. Our study reveals how the design of the nervous system reflects several constraints, including its key functional role as a processor of information.Comment: Published version, Minor modifications, 16 pages, 9 figure

    Biomarker Testing to Estimate Under-Reported Heavy Alcohol Consumption by Persons with HIV Initiating ART in Uganda

    Get PDF
    Alcohol affects the transmission and treatment of HIV, yet may be under-reported in resource-limited settings. We compared self-reported alcohol consumption with levels of plasma carbohydrate-deficient transferrin (%CDT), a biomarker of heavy alcohol consumption, in persons initiating antiretroviral therapy in Uganda. Almost seven percent (6.7%) of persons reporting abstaining and 10% reporting consuming 1–40 drinks in the prior month tested positive for %CDT, and actual under-report may be higher due to low sensitivity of %CDT. These results suggest likely under-report in those reporting abstaining and current drinking. Improved identification of heavy alcohol consumption is needed for research and clinical purposes

    ExCyto PCR Amplification

    Get PDF
    ExCyto PCR cells provide a novel and cost effective means to amplify DNA transformed into competent bacterial cells. ExCyto PCR uses host E. coli with a chromosomally integrated gene encoding a thermostable DNA polymerase to accomplish robust, hot-start PCR amplification of cloned sequences without addition of exogenous enzyme.Because the thermostable DNA polymerase is stably integrated into the bacterial chromosome, ExCyto cells can be transformed with a single plasmid or complex library, and then the expressed thermostable DNA polymerase can be used for PCR amplification. We demonstrate that ExCyto cells can be used to amplify DNA from different templates, plasmids with different copy numbers, and master mixes left on ice for up to two hours. Further, PCR amplification with ExCyto cells is comparable to amplification using commercial DNA polymerases. The ability to transform a bacterial strain and use the endogenously expressed protein for PCR has not previously been demonstrated.ExCyto PCR reduces pipetting and greatly increases throughput for screening EST, genomic, BAC, cDNA, or SNP libraries. This technique is also more economical than traditional PCR and thus broadly useful to scientists who utilize analysis of cloned DNAs in their research

    The Suppressor of AAC2 Lethality SAL1 Modulates Sensitivity of Heterologously Expressed Artemia ADP/ATP Carrier to Bongkrekate in Yeast

    Get PDF
    The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner. © 2013 Wysocka-Kapcinska et al

    New algorithm improves fine structure of the barley consensus SNP map

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The need to integrate information from multiple linkage maps is a long-standing problem in genetics. One way to visualize the complex ordinal relationships is with a directed graph, where each vertex in the graph is a bin of markers. When there are no ordering conflicts between the linkage maps, the result is a directed acyclic graph, or DAG, which can then be linearized to produce a consensus map.</p> <p>Results</p> <p>New algorithms for the simplification and linearization of consensus graphs have been implemented as a package for the R computing environment called DAGGER. The simplified consensus graphs produced by DAGGER exactly capture the ordinal relationships present in a series of linkage maps. Using either linear or quadratic programming, DAGGER generates a consensus map with minimum error relative to the linkage maps while remaining ordinally consistent with them. Both linearization methods produce consensus maps that are compressed relative to the mean of the linkage maps. After rescaling, however, the consensus maps had higher accuracy (and higher marker density) than the individual linkage maps in genetic simulations. When applied to four barley linkage maps genotyped at nearly 3000 SNP markers, DAGGER produced a consensus map with improved fine structure compared to the existing barley consensus SNP map. The root-mean-squared error between the linkage maps and the DAGGER map was 0.82 cM per marker interval compared to 2.28 cM for the existing consensus map. Examination of the barley hardness locus at the 5HS telomere, for which there is a physical map, confirmed that the DAGGER output was more accurate for fine structure analysis.</p> <p>Conclusions</p> <p>The R package DAGGER is an effective, freely available resource for integrating the information from a set of consistent linkage maps.</p

    Quantitative Characterization of the Filiform Mechanosensory Hair Array on the Cricket Cercus

    Get PDF
    Crickets and other orthopteran insects sense air currents with a pair of abdominal appendages resembling antennae, called cerci. Each cercus in the common house cricket Acheta domesticus is approximately 1 cm long, and is covered with 500 to 750 filiform mechanosensory hairs. The distribution of the hairs on the cerci, as well as the global patterns of their movement vectors, have been characterized semi-quantitatively in studies over the last 40 years, and have been shown to be very stereotypical across different animals in this species. Although the cercal sensory system has been the focus of many studies in the areas of neuroethology, development, biomechanics, sensory function and neural coding, there has not yet been a quantitative study of the functional morphology of the receptor array of this important model system.We present a quantitative characterization of the structural characteristics and functional morphology of the cercal filiform hair array. We demonstrate that the excitatory direction along each hair's movement plane can be identified by features of its socket that are visible at the light-microscopic level, and that the length of the hair associated with each socket can also be estimated accurately from a structural parameter of the socket. We characterize the length and directionality of all hairs on the basal half of a sample of three cerci, and present statistical analyses of the distributions.The inter-animal variation of several global organizational features is low, consistent with constraints imposed by functional effectiveness and/or developmental processes. Contrary to previous reports, however, we show that the filiform hairs are not re-identifiable in the strict sense
    corecore