141 research outputs found
The red leg dilemma: a scoping review of the challenges of diagnosing lower limb cellulitis
Background: Suspected lower limb cellulitis presentations are commonly misdiagnoses, resulting in avoidable antibiotic prescribing or hospital admissions. Understanding the challenges posed in diagnosing cellulitis may help enhance future care.Objectives: To examine and map out the challenges and facilitators identified by patients and health professionals in diagnosing lower limb cellulitis.Methods: A scoping systematic review was performed in MEDLINE and Embase in October 2017. Thematic analysis was used to identify key themes. Quantitative data was summarised by narrative synthesis.Results: Three themes were explored: (i) clinical case reports of misdiagnosis, (ii) service development and (iii) diagnostic aids. Forty‐seven different pathologies were misdiagnosed, including seven malignancies. Two different services have been piloted to reduce the misdiagnosis rates of lower limb cellulitis and save costs. Four studies have looked at biochemical markers, imaging and a scoring tool to aid diagnosis.Conclusions: This review highlights the range of alternative pathologies that can be misdiagnosed as cellulitis, and emerging services and diagnostic aids developed to minimise misdiagnosis. Future work should focus on gaining a greater qualitative understanding of the diagnostic challenges from the perspective of patients and clinicians.This article is protected by copyright. All rights reserved
Disruption of Mitochondrial DNA Replication in Drosophila Increases Mitochondrial Fast Axonal Transport In Vivo
Mutations in mitochondrial DNA polymerase (pol γ) cause several progressive human diseases including Parkinson's disease, Alper's syndrome, and progressive external ophthalmoplegia. At the cellular level, disruption of pol γ leads to depletion of mtDNA, disrupts the mitochondrial respiratory chain, and increases susceptibility to oxidative stress. Although recent studies have intensified focus on the role of mtDNA in neuronal diseases, the changes that take place in mitochondrial biogenesis and mitochondrial axonal transport when mtDNA replication is disrupted are unknown. Using high-speed confocal microscopy, electron microscopy and biochemical approaches, we report that mutations in pol γ deplete mtDNA levels and lead to an increase in mitochondrial density in Drosophila proximal nerves and muscles, without a noticeable increase in mitochondrial fragmentation. Furthermore, there is a rise in flux of bidirectional mitochondrial axonal transport, albeit with slower kinesin-based anterograde transport. In contrast, flux of synaptic vesicle precursors was modestly decreased in pol γ−α mutants. Our data indicate that disruption of mtDNA replication does not hinder mitochondrial biogenesis, increases mitochondrial axonal transport, and raises the question of whether high levels of circulating mtDNA-deficient mitochondria are beneficial or deleterious in mtDNA diseases
Chemokine Coreceptor Signaling in HIV-1 Infection and Pathogenesis
Binding of the HIV-1 envelope to its chemokine coreceptors mediates two major biological events: membrane fusion and signaling transduction. The fusion process has been well studied, yet the role of chemokine coreceptor signaling in viral infection has remained elusive through the past decade. With the recent demonstration of the signaling requirement for HIV latent infection of resting CD4 T cells, the issue of coreceptor signaling needs to be thoroughly revisited. It is likely that virus-mediated signaling events may facilitate infection in various immunologic settings in vivo where cellular conditions need to be primed; in other words, HIV may exploit the chemokine signaling network shared among immune cells to gain access to downstream cellular components, which can then serve as effective tools to break cellular barriers. This virus-hijacked aberrant signaling process may in turn facilitate pathogenesis. In this review, we summarize past and present studies on HIV coreceptor signaling. We also discuss possible roles of coreceptor signaling in facilitating viral infection and pathogenesis
Effects of alirocumab on types of myocardial infarction: insights from the ODYSSEY OUTCOMES trial
Aims The third Universal Definition of Myocardial Infarction (MI) Task Force classified MIs into five types: Type 1, spontaneous; Type 2, related to oxygen supply/demand imbalance; Type 3, fatal without ascertainment of cardiac biomarkers; Type 4, related to percutaneous coronary intervention; and Type 5, related to coronary artery bypass surgery. Low-density lipoprotein cholesterol (LDL-C) reduction with statins and proprotein convertase subtilisin–kexin Type 9 (PCSK9) inhibitors reduces risk of MI, but less is known about effects on types of MI. ODYSSEY OUTCOMES compared the PCSK9 inhibitor alirocumab with placebo in 18 924 patients with recent acute coronary syndrome (ACS) and elevated LDL-C (≥1.8 mmol/L) despite intensive statin therapy. In a pre-specified analysis, we assessed the effects of alirocumab on types of MI. Methods and results Median follow-up was 2.8 years. Myocardial infarction types were prospectively adjudicated and classified. Of 1860 total MIs, 1223 (65.8%) were adjudicated as Type 1, 386 (20.8%) as Type 2, and 244 (13.1%) as Type 4. Few events were Type 3 (n = 2) or Type 5 (n = 5). Alirocumab reduced first MIs [hazard ratio (HR) 0.85, 95% confidence interval (CI) 0.77–0.95; P = 0.003], with reductions in both Type 1 (HR 0.87, 95% CI 0.77–0.99; P = 0.032) and Type 2 (0.77, 0.61–0.97; P = 0.025), but not Type 4 MI. Conclusion After ACS, alirocumab added to intensive statin therapy favourably impacted on Type 1 and 2 MIs. The data indicate for the first time that a lipid-lowering therapy can attenuate the risk of Type 2 MI. Low-density lipoprotein cholesterol reduction below levels achievable with statins is an effective preventive strategy for both MI types.For complete list of authors see http://dx.doi.org/10.1093/eurheartj/ehz299</p
A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairment - ThinkingFit: : pilot and feasibility study for a randomized controlled trial
© 2014 Dannhauser et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The version of record, Thomas M. Dannhauser, Martin Cleverly, Tim J. Whitfield, Ben (C) Fletcher, and Tim Stevens, 'A complex multimodal activity intervention to reduce the risk of dementia in mild cognitive impairment - ThinkingFit: pilot and feasibility study for a randomized controlled trial', BMC Psychiatry, 2014, 14: 129, is available online via doi: 10.1186/1471-244X-14-129Dementia affects 35 million people worldwide and is currently incurable. Many cases may be preventable because regular participation in physical, mental and social leisure activities during middle age is associated with up to 47% dementia risk reduction. However, the majority of middle-aged adults are not active enough. MCI is therefore a clear target for activity interventions aimed at reducing dementia risk. An active lifestyle during middle age reduces dementia risk but it remains to be determined if increased activity reduces dementia risk when MCI is already evident. Before this can be investigated conclusively, complex multimodal activity programmes are required that (1) combine multiple health promoting activities, (2) engage people with MCI, and (3) result in sufficient adherence ratesPeer reviewedFinal Published versio
- …