37 research outputs found

    Effects of zinc and fluoride on the remineralisation of artificial carious lesions under simulated plaque fluid conditions.

    Get PDF
    The aim was to study the effects of zinc (Zn) and fluoride (F) on remineralisation at plaque fluid concentrations. Artificial carious lesions were created in 2 acid-gel demineralising systems (initially infinitely undersaturated and partially saturated with respect to enamel) giving lesions with different mineral distribution characteristics (high and low R values, respectively) but similar integrated mineral loss values. Lesions of both types were assigned to 1 of 4 groups and remineralised for 5 days at 37°C. Zn and F were added, based on plaque fluid concentrations 1 h after application, to give 4 treatments: 231 μmol/l Zn, 10.5 μmol/l F, Zn/F combined and an unmodified control solution (non-F/non-Zn). Subsequently remineralisation was measured using microradiography. High-R lesions were analysed for calcium, phosphorus, F and Zn using electron probe micro-analysis. All lesions underwent statistically significant remineralisation. For low-R lesions, remineralisation was in the order F(a) < non-F/non-Zn(a) < Zn(a, b) < Zn/F(b), and for high-R lesions F(a) < non-F/non-Zn(b) < Zn(b) < Zn/F(c) (treatments with the same superscript letter not significantly different, at p < 0.05). Qualitatively, remineralisation occurred throughout non-F/non-Zn and Zn groups, predominantly at the surface zone (F) and within the lesion body (Zn/F). Electron probe micro-analysis revealed Zn in relatively large amounts in the outer regions (Zn, Zn/F). F was abundant not only at the surface (F), but also in the lesion body (Zn/F). Calcium:phosphate ratios were similar to hydroxyapatite (all). To conclude, under static remineralising conditions simulating plaque fluid, Zn/F treatment gave significantly greater remineralisation than did F treatment, possibly because Zn in the Zn/F group maintained greater surface zone porosity compared with F, facilitating greater lesion body remineralisation

    A Novel Kinetic Method to Measure Apparent Solubility Product of Bulk Human Enamel

    No full text
    LH is the recipient of a studentship from BBSRC and stipend from GlaxoSmithKline. This study was supported by the Biotechnology and Biological Sciences Research Council and GlaxoSmithKline

    Halogenases: structures and functions

    No full text
    Over 5000 halogenated natural products have been reported so far, many of these arising from the marine environment. The introduction of a halogen into a molecule can significantly impact its bioavailability and bioactivity. More recently enzymatic halogenation has been used to enable late stage functionalisation through site-selective halogenation and cross-coupling. Halogenases are becoming increasingly valued tools. This review outlines the various classes of halogenases that have been discovered, and examines these from both a structural and a mechanistic perspective, reflecting upon the many recent advances in halogenase discovery
    corecore