461 research outputs found

    The FDA guidance for industry on PROs: the point of view of a pharmaceutical company

    Get PDF
    The importance of the patients point of view on their health status is widely recognised. Patient-reported outcomes is a broad term encompassing a large variety of different health data reported by patients, as symptoms, functional status, Quality of Life and Health-Related Quality of Life. Measurements of Health-Related Quality of Life have been developed during many years of researches, and a lot of validated questionnaires exist. However, few attempts have been made to standardise the evaluation of instruments characteristics, no recommendations are made about interpretation on Health-Related Quality of Life results, especially regarding the clinical significance of a change leading a therapeutic approach. Moreover, the true value of Health-Related Quality of Life evaluations in clinical trials has not yet been completely defined. An important step towards a more structured and frequent use of Patient-Reported Outcomes in drug development is represented by the FDA Guidance, issued on February 2006. In our paper we aim to report some considerations on this Guidance. Our comments focus especially on the characteristics of instruments to use, the Minimal Important Difference, and the methods to calculate it. Furthermore, we present the advantages and opportunities of using the Patient-Reported Outcomes in drug development, as seen by a pharmaceutical company. The Patient-Reported Outcomes can provide additional data to make a drug more competitive than others of the same pharmacological class, and a well demonstrated positive impact on the patient' health status and daily life might allow a higher price and/or the inclusion in a reimbursement list. Applying extensively the FDA Guidance in the next trials could lead to a wider culture of subjective measurement, and to a greater consideration for the patient's opinions on his/her care. Moreover, prescribing doctors and payers could benefit from subjective information to better define the value of drugs

    Cardiac magnetic resonance imaging in stable ischaemic heart disease

    Get PDF
    Cardiac magnetic resonance imaging (CMR) is a new robust versatile non-invasive imaging technique that can detect global and regional myocardial dysfunction, presence of myocardial ischaemia and myocardial scar tissue in one imaging session without radiation, with superb spatial and temporal resolution, inherited three-dimensional data collection and with relatively safe contrast material. The reproducibility of CMR is high which makes it possible to use this technique for serial assessment to evaluate the effect of revascularisation therapy in patients with ischaemic heart disease

    Nonthermal Emission from Star-Forming Galaxies

    Full text link
    The detections of high-energy gamma-ray emission from the nearby starburst galaxies M82 & NGC253, and other local group galaxies, broaden our knowledge of star-driven nonthermal processes and phenomena in non-AGN star-forming galaxies. We review basic aspects of the related processes and their modeling in starburst galaxies. Since these processes involve both energetic electrons and protons accelerated by SN shocks, their respective radiative yields can be used to explore the SN-particle-radiation connection. Specifically, the relation between SN activity, energetic particles, and their radiative yields, is assessed through respective measures of the particle energy density in several star-forming galaxies. The deduced energy densities range from O(0.1) eV/cm^3 in very quiet environments to O(100) eV/cm^3 in regions with very high star-formation rates.Comment: 17 pages, 5 figures, to be published in Astrophysics and Space Science Proceeding

    16S rRNA Gene Pyrosequencing Reveals Bacterial Dysbiosis in the Duodenum of Dogs with Idiopathic Inflammatory Bowel Disease

    Get PDF
    BACKGROUND: Canine idiopathic inflammatory bowel disease (IBD) is believed to be caused by a complex interaction of genetic, immunologic, and microbial factors. While mucosa-associated bacteria have been implicated in the pathogenesis of canine IBD, detailed studies investigating the enteric microbiota using deep sequencing techniques are lacking. The objective of this study was to evaluate mucosa-adherent microbiota in the duodenum of dogs with spontaneous idiopathic IBD using 16 S rRNA gene pyrosequencing. METHODOLOGY/PRINCIPAL FINDINGS: Biopsy samples of small intestinal mucosa were collected endoscopically from healthy dogs (n = 6) and dogs with moderate IBD (n = 7) or severe IBD (n = 7) as assessed by a clinical disease activity index. Total RNA was extracted from biopsy specimens and 454-pyrosequencing of the 16 S rRNA gene was performed on aliquots of cDNA from each dog. Intestinal inflammation was associated with significant differences in the composition of the intestinal microbiota when compared to healthy dogs. PCoA plots based on the unweighted UniFrac distance metric indicated clustering of samples between healthy dogs and dogs with IBD (ANOSIM, p<0.001). Proportions of Fusobacteria (p = 0.010), Bacteroidaceae (p = 0.015), Prevotellaceae (p = 0.022), and Clostridiales (p = 0.019) were significantly more abundant in healthy dogs. In contrast, specific bacterial genera within Proteobacteria, including Diaphorobacter (p = 0.044) and Acinetobacter (p = 0.040), were either more abundant or more frequently identified in IBD dogs. CONCLUSIONS/SIGNIFICANCE: In conclusion, dogs with spontaneous IBD exhibit alterations in microbial groups, which bear resemblance to dysbiosis reported in humans with chronic intestinal inflammation. These bacterial groups may serve as useful targets for monitoring intestinal inflammation

    Spatial Dynamics of Human-Origin H1 Influenza A Virus in North American Swine

    Get PDF
    The emergence and rapid global spread of the swine-origin H1N1/09 pandemic influenza A virus in humans underscores the importance of swine populations as reservoirs for genetically diverse influenza viruses with the potential to infect humans. However, despite their significance for animal and human health, relatively little is known about the phylogeography of swine influenza viruses in the United States. This study utilizes an expansive data set of hemagglutinin (HA1) sequences (n = 1516) from swine influenza viruses collected in North America during the period 2003–2010. With these data we investigate the spatial dissemination of a novel influenza virus of the H1 subtype that was introduced into the North American swine population via two separate human-to-swine transmission events around 2003. Bayesian phylogeographic analysis reveals that the spatial dissemination of this influenza virus in the US swine population follows long-distance swine movements from the Southern US to the Midwest, a corn-rich commercial center that imports millions of swine annually. Hence, multiple genetically diverse influenza viruses are introduced and co-circulate in the Midwest, providing the opportunity for genomic reassortment. Overall, the Midwest serves primarily as an ecological sink for swine influenza in the US, with sources of virus genetic diversity instead located in the Southeast (mainly North Carolina) and South-central (mainly Oklahoma) regions. Understanding the importance of long-distance pig transportation in the evolution and spatial dissemination of the influenza virus in swine may inform future strategies for the surveillance and control of influenza, and perhaps other swine pathogens

    Clustering of classical swine fever virus isolates by codon pair bias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic code consists of non-random usage of synonymous codons for the same amino acids, termed codon bias or codon usage. Codon juxtaposition is also non-random, referred to as codon context bias or codon pair bias. The codon and codon pair bias vary among different organisms, as well as with viruses. Reasons for these differences are not completely understood. For classical swine fever virus (CSFV), it was suggested that the synonymous codon usage does not significantly influence virulence, but the relationship between variations in codon pair usage and CSFV virulence is unknown. Virulence can be related to the fitness of a virus: Differences in codon pair usage influence genome translation efficiency, which may in turn relate to the fitness of a virus. Accordingly, the potential of the codon pair bias for clustering CSFV isolates into classes of different virulence was investigated.</p> <p>Results</p> <p>The complete genomic sequences encoding the viral polyprotein of 52 different CSFV isolates were analyzed. This included 49 sequences from the GenBank database (NCBI) and three newly sequenced genomes. The codon usage did not differ among isolates of different virulence or genotype. In contrast, a clustering of isolates based on their codon pair bias was observed, clearly discriminating highly virulent isolates and vaccine strains on one side from moderately virulent strains on the other side. However, phylogenetic trees based on the codon pair bias and on the primary nucleotide sequence resulted in a very similar genotype distribution.</p> <p>Conclusion</p> <p>Clustering of CSFV genomes based on their codon pair bias correlate with the genotype rather than with the virulence of the isolates.</p

    Distinct Genetic Diversity of Oncomelania hupensis, Intermediate Host of Schistosoma japonicum in Mainland China as Revealed by ITS Sequences

    Get PDF
    The intermediate host of Schistosoma japonicum in Asia is the snail Oncomelania hupensis, which can be separated phenotypically into ribbed- and smooth-shelled morphotypes. In China, the typical morphotype is ribbed-shelled, with its distribution restricted to mainland China. Smooth-shelled snails with varix are also distributed in China, which are considered to belong to the same subspecies as the ribbed-shelled snails. In this study we investigate the genetic variation among O. hupensis from different geographical origins using combined complete ITS1 and ITS2 regions of nuclear ribosomal DNA. Snails including ribbed-shelled and smooth-shelled (but with varix on the shell) from the lake/marshland region of the middle and lower reaches of the Yangtze River, and smooth-shelled snails from mountainous regions of Sichuan and Yunnan provinces, were genetically distinct with no shared haplotypes detected. Furtheremore, the snails from Sichuan and Yunnan provinces were clustered in separate clades in the phylogenetic tree, and three clades were observed for snails from the middle and lower reaches of the Yangtze River. The population diversity of O. hupensis in China is thus considered large, and evolutionary relationships in the host-parasite system of O. hupensis-S. japonicum may be of interest for further research

    Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An Appropriate Method for Automatic Screw Modelling

    Get PDF
    The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations

    Capacitative calcium influx and proliferation of human osteoblastic-like MG-63 cells

    Get PDF
    Adult bone tissue is continuously being remodelled and bone mass is maintained by a balance between osteoclastic bone resorption and osteoblastic bone formation. Alteration of osteoblastic cell proliferation may account in part for lack of balance between these two processes in bone loss of osteoporosis. There is calcium (Ca2+) control in numerous cellular functions; however, involvement of capacitative Ca2+ entry (CCE) in proliferation of bone cells is less well investigated. OBJECTIVES: The study described here was aimed to investigate roles of CCE in the proliferation of osteoblast-like MG-63 cells. MATERIALS AND METHODS: Pharmacological characterizations of CCE were undertaken in parallel, with evaluation of the expression of transient receptor potential canonical (TRPC) channels and of cell proliferation. RESULTS: Intracellular Ca2+ store depletion by thapsigargin induced CCE in MG-63 cells; this was characterized by a rapid transient increase of intracellular Ca2+ followed by significant CCE, induced by conditions that stimulated cell proliferation, namely serum and platelet-derived growth factor. Inhibitors of store-operated Ca2+ channels (2-APB and SKF-96365) prevented CCE, while voltage-dependent Ca2+ channel blockers had no effect. Expression of various TRPC channels was shown in the cells, some having been shown to be responsible for CCE. Voltage-dependent Ca2+ channel blockers had no effect on osteoblast proliferation while thapsigargin, 2-APB and SKF-96395, inhibited it. Cell cycle analysis showed that 2-APB and SKF-96395 lengthen the S and G2/M phases, which would account for the reduction in cell proliferation. CONCLUSIONS: Our results indicate that CCE, likely attributed to the activation of TRPCs, might be the main route for Ca2+ influx involved in osteoblast proliferation
    corecore