13 research outputs found

    Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data

    Get PDF
    First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recent—probably not before 1100 years ago—thus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event

    Mineralogical and geochemical analysis of Fe-phases in drill-cores from the Triassic Stuttgart Formation at Ketzin COâ‚‚ storage site before COâ‚‚ arrival

    Get PDF
    Reactive iron (Fe) oxides and sheet silicate-bound Fe in reservoir rocks may affect the subsurface storage of CO2 through several processes by changing the capacity to buffer the acidification by CO2 and the permeability of the reservoir rock: (1) the reduction of three-valent Fe in anoxic environments can lead to an increase in pH, (2) under sulphidic conditions, Fe may drive sulphur cycling and lead to the formation of pyrite, and (3) the leaching of Fe from sheet silicates may affect silicate diagenesis. In order to evaluate the importance of Fe-reduction on the CO2 reservoir, we analysed the Fe geochemistry in drill-cores from the Triassic Stuttgart Formation (Schilfsandstein) recovered from the monitoring well at the CO2 test injection site near Ketzin, Germany. The reservoir rock is a porous, poorly to moderately cohesive fluvial sandstone containing up to 2–4 wt% reactive Fe. Based on a sequential extraction, most Fe falls into the dithionite-extractable Fe-fraction and Fe bound to sheet silicates, whereby some Fe in the dithionite-extractable Fe-fraction may have been leached from illite and smectite. Illite and smectite were detected in core samples by X-ray diffraction and confirmed as the main Fe-containing mineral phases by X-ray absorption spectroscopy. Chlorite is also present, but likely does not contribute much to the high amount of Fe in the silicate-bound fraction. The organic carbon content of the reservoir rock is extremely low (<0.3 wt%), thus likely limiting microbial Fe-reduction or sulphate reduction despite relatively high concentrations of reactive Fe-mineral phases in the reservoir rock and sulphate in the reservoir fluid. Both processes could, however, be fuelled by organic matter that is mobilized by the flow of supercritical CO2 or introduced with the drilling fluid. Over long time periods, a potential way of liberating additional reactive Fe could occur through weathering of silicates due to acidification by CO2

    New insights from Thailand into the maternal genetic history of Mainland Southeast Asia

    Get PDF
    Tai-Kadai (TK) is one of the major language families in Mainland Southeast Asia (MSEA), with a concentration in the area of Thailand and Laos. Our previous study of 1234 mtDNA genome sequences supported a demic diffusion scenario in the spread of TK languages from southern China to Laos as well as northern and northeastern Thailand. Here we add an additional 560 mtDNA genomes from 22 groups, with a focus on the TK-speaking central Thai people and the Sino-Tibetan speaking Karen. We find extensive diversity, including 62 haplogroups not reported previously from this region. Demic diffusion is still a preferable scenario for central Thais, emphasizing the expansion of TK people through MSEA, although there is also some support for gene flow between central Thai and native Austroasiatic speaking Mon and Khmer. We also tested competing models concerning the genetic relationships of groups from the major MSEA languages, and found support for an ancestral relationship of TK and Austronesian-speaking groups

    The critical role of ants in the extensive dispersal of Acacia seeds revealed by genetic parentage assignment

    No full text
    Ants are prominent seed dispersal agents in many ecosystems, and dispersal distances are small in comparison with vertebrate dispersal agents. However, the distance and distribution of ant-mediated dispersal in arid/semi-arid environments remains poorly explored. We used microsatellite markers and parentage assignment to quantify the distance and distribution of dispersed seeds of Acacia karina, retrieved from the middens of Iridomyrmex agilis and Melophorus turneri perthensis. From parentage assignment, we could not distinguish the maternal from each parent pair assigned to each seed, so we applied two approaches to estimate dispersal distances, one conservative (CONS), where the parent closest to the ant midden was considered to be maternal, and the second where both parents were deemed equally likely (EL) to be maternal, and used both distances. Parentage was assigned to 124 seeds from eight middens. Maximum seed dispersal distances detected were 417 m (CONS) and 423 m (EL), more than double the estimated global maximum. Mean seed dispersal distances of 40 m (±5.8 SE) (CONS) and 79 m (±6.4 SE) (EL) exceeded the published global average of 2.24 m (±7.19 SD) by at least one order of magnitude. For both approaches and both ant species, seed dispersal was predominantly (44–84 % of all seeds) within 50 m from the maternal source, with fewer dispersal events at longer distances. Ants in this semi-arid environment have demonstrated a greater capacity to disperse seeds than estimated elsewhere, which highlights their important role in this system, and suggests significant novel ecological and evolutionary consequences for myrmecochorous species in arid/semi-arid Australia
    corecore