6,090 research outputs found

    Reducing the Attack Surface of Dynamic Binary Instrumentation Frameworks

    Get PDF
    Malicious applications pose as one of the most relevant issues in today’s technology scenario, being considered the root of many Internet security threats. In part, this owes the ability of malware developers to promptly respond to the emergence of new security solutions by developing artifacts to detect and avoid them. In this work, we present three countermeasures to mitigate recent mechanisms used by malware to detect analysis environments. Among these techniques, this work focuses on those that enable a malware to detect dynamic binary instrumentation frameworks, thus increasing their attack surface. To ensure the effectiveness of the proposed countermeasures, proofs of concept were developed and tested in a controlled environment with a set of anti-instrumentation techniques. Finally, we evaluated the performance impact of using such countermeasures

    Swift UVOT grism observations of nearby Type Ia supernovae – II. Probing the progenitor metallicity of SNe Ia with ultraviolet spectra

    Get PDF
    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) are crucial for constraining the properties of their progenitor systems. Theoretical studies predicted that the UV spectra, which probe the outermost layers of an SN, should be sensitive to the metal content of the progenitor. Using the largest SN Ia UV (λ < 2900 Å) spectroscopic sample obtained from Neil Gehrels Swift Observatory, we investigate the dependence of UV spectra on metallicity. For the first time, our results reveal a correlation (∌2σ) between SN Ia UV flux and hostgalaxy metallicities, with SNe in more metal-rich galaxies (which are likely to have higher progenitor metallicities) having lower UV flux level. We find that this metallicity effect is only significant at short wavelengths (λ 2700 Å), which agrees well with the theoretical predictions. We produce UV spectral templates for SNe Ia at peak brightness. With our sample, we could disentangle the effect of light-curve shape and metallicity on the UV spectra. We also examine the correlation between the UV spectra and SN luminosities as parametrized by Hubble residuals. However, we do not see a significant trend with Hubble residuals. This is probably due to the large uncertainties in SN distances, as the majority of our sample members are extremely nearby (redshift z 0.01). Future work with SNe discovered in the Hubble flow will be necessary to constrain a potential metallicity bias on SN Ia cosmology

    Undrained cyclic loading behavior of stiff Eocene-to-Jurassic plastic, high OCR, clays

    Get PDF
    Assessing foundation response to cyclic loading is vital when designing transport infrastructure, such as road pavements and rail tracks, as well as offshore, port, and tall tower structures. While detailed guidance is available on characterizing many soil types’ cyclic behavior, relatively few studies have been reported on stiff, geologically aged, plastic clays. This paper addresses this gap in knowledge by reporting cyclic loading experiments on three natural stiff UK clays that were deposited and buried between the Jurassic Age and Eocene Epoch before geological unloading to their currently heavily over-consolidated states. High-quality samples taken at relatively shallow depths were reconsolidated to nominally in-situ K0 stresses in triaxial and hollow cylinder apparatus before imposing cyclic loading. The completely stable, metastable, or unstable outcomes invoked by different levels of undrained cyclic loading are interpreted within a kinematic yielding framework that is compatible with monotonic control experiments’ outcomes. The cyclic limits marking the onset of significant changes in permanent strain accumulation, pore pressure development, and stress-strain hysteresis demonstrate that the weathered Gault clay offers the lowest cyclic resistance. The experiments show that energy considerations provide a promising way of evaluating undrained pore pressure generation and stiffness degradation. They also provide a basis for developing cyclic constitutive models and analysis procedures for cyclic foundation design in stiff, high OCR, plastic clay strata

    Resident interest and factors involved in entering a pediatric pulmonary fellowship

    Get PDF
    BACKGROUND: Relatively little is known about interest in pediatric pulmonology among pediatric residents. The purpose of this study, therefore, was to determine at this institution: 1) the level of pediatric resident interest in pursuing a pulmonary fellowship, 2) potential factors involved in development of such interest, 3) whether the presence of a pulmonary fellowship program affects such interest. METHODS: A questionnaire was distributed to all 52 pediatric residents at this institution in 1992 and to all 59 pediatric residents and 14 combined internal medicine/pediatrics residents in 2002, following development of a pulmonary fellowship program. RESULTS: Response rates were 79% in 1992 and 86% in 2002. Eight of the 43 responders in 1992 (19%) had considered doing a pulmonary fellowship compared to 7 of 63 (11%) in 2002. The highest ranked factors given by the residents who had considered a fellowship included wanting to continue one's education after residency, enjoying caring for pulmonary patients, and liking pulmonary physiology and the pulmonary faculty. Major factors listed by residents who had not considered a pulmonary fellowship included not enjoying the tracheostomy/ventilator population and chronic pulmonary patients in general, and a desire to enter general pediatrics or another fellowship. Most residents during both survey periods believed that they would be in non-academic or academic general pediatrics in 5 years. Only 1 of the 106 responding residents (~1%) anticipated becoming a pediatric pulmonologist. CONCLUSIONS: Although many pediatric residents consider enrolling in a pulmonary fellowship (~10–20% here), few (~1% here) will actually pursue a career in pediatric pulmonology. The presence of a pulmonary fellowship program did not significantly alter resident interest, though other confounding factors may be involved

    Undrained cyclic response of K-0-consolidated stiff cretaceous clay under wheel loading conditions

    Get PDF
    Optimal whole life design for railways, highways, runways, and metro lines requires an accurate assessment of how their underlying geomaterials respond to large numbers of wheel-loading cycles. This paper presents an experimental study on a natural UK stiff clay with a cyclic triaxial (CT) and hollow cylinder apparatus (CHCA) that imposed K0 and wheel-loading stress conditions. The focus is on Gault clay, a high overconsolidation ratio (OCR) marine clay deposited in the Cretaceous, whose mechanical behavior is significantly anisotropic and in situ K0 values exceed unity. The clay outcrops under sections of most major highways radiating out of London, as well as the HS1 and new HS2 high-speed railways. The experimental investigation explored how the principal stress rotation implicit in wheel loading increases the magnitudes and changes the sign of vertical strain accumulation, as well as accelerating resilient modulus degradation and accentuating stress–strain hysteresis, all of which affect pavement or rail-track serviceability. The clay’s deformation and pore pressure responses are categorized into stable, metastable, and unstable patterns. Comparisons with related studies on low OCR, low K0 soft clay from Wenzhou in southeastern China, confirm the Gault clay’s generally stiffer prefailure behavior and different cyclic response. The stiff clay’s greater brittleness is also emphasized; particle reorientation occurs readily along distinct shear bands, leading to dramatic shear strength reductions that have a major impact on slope and foundation stability and call for appropriate caution in practical design

    Elevated CO<sub>2</sub> does not increase eucalypt forest productivity on a low-phosphorus soil

    Get PDF
    Rising atmospheric CO2 stimulates photosynthesis and productivity of forests, offsetting CO2 emissions. Elevated CO2 experiments in temperate planted forests yielded ~23% increases in productivity over the initial years. Whether similar CO2 stimulation occurs in mature evergreen broadleaved forests on low-phosphorus (P) soils is unknown, largely due to lack of experimental evidence. This knowledge gap creates major uncertainties in future climate projections as a large part of the tropics is P-limited. Here,we increased atmospheric CO2 concentration in a mature broadleaved evergreen eucalypt forest for three years, in the first large-scale experiment on a P-limited site. We show that tree growth and other aboveground productivity components did not significantly increase in response to elevated CO2 in three years, despite a sustained 19% increase in leaf photosynthesis. Moreover, tree growth in ambient CO2 was strongly P-limited and increased by ~35% with added phosphorus. The findings suggest that P availability may potentially constrain CO2-enhanced productivity in P-limited forests; hence, future atmospheric CO2 trajectories may be higher than predicted by some models. As a result, coupled climate-carbon models should incorporate both nitrogen and phosphorus limitations to vegetation productivity in estimating future carbon sinks
    • 

    corecore