33 research outputs found
Alpha-santalol, a chemopreventive agent against skin cancer, causes G2/M cell cycle arrest in both p53-mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells
<p>Abstract</p> <p>Background</p> <p>α-Santalol, an active component of sandalwood oil, has shown chemopreventive effects on skin cancer in different murine models. However, effects of α-santalol on cell cycle have not been studied. Thus, the objective of this study was to investigate effects of α-santalol on cell cycle progression in both p53 mutated human epidermoid carcinoma A431 cells and p53 wild-type human melanoma UACC-62 cells to elucidate the mechanism(s) of action.</p> <p>Methods</p> <p>MTT assay was used to determine cell viability in A431 cells and UACC-62; fluorescence-activated cell sorting (FACS) analysis of propidium iodide staining was used for determining cell cycle distribution in A431 cells and UACC-62 cells; immunoblotting was used for determining the expression of various proteins and protein complexes involved in the cell cycle progression; siRNA were used to knockdown of p21 or p53 in A431 and UACC-62 cells and immunofluorescence microscopy was used to investigate microtubules in UACC-62 cells.</p> <p>Results</p> <p>α-Santalol at 50-100 μM decreased cell viability from 24 h treatment and α-santalol at 50 μM-75 μM induced G<sub>2</sub>/M phase cell cycle arrest from 6 h treatment in both A431 and UACC-62 cells. α-Santalol altered expressions of cell cycle proteins such as cyclin A, cyclin B1, Cdc2, Cdc25c, p-Cdc25c and Cdk2. All of these proteins are critical for G<sub>2</sub>/M transition. α-Santalol treatment up-regulated the expression of p21 and suppressed expressions of mutated p53 in A431 cells; whereas, α-santalol treatment increased expressions of wild-type p53 in UACC-62 cells. Knockdown of p21 in A431 cells, knockdown of p21 and p53 in UACC-62 cells did not affect cell cycle arrest caused by α-santalol. Furthermore, α-santalol caused depolymerization of microtubules similar to vinblastine in UACC-62 cells.</p> <p>Conclusions</p> <p>This study for the first time identifies effects of α-santalol in G<sub>2</sub>/M phase arrest and describes detailed mechanisms of G<sub>2</sub>/M phase arrest by this agent, which might be contributing to its overall cancer preventive efficacy in various mouse skin cancer models.</p
ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). METHODS: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. RESULTS: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. INTERPRETATION: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects
P53 expression is significantly correlated with high risk of malignancy and epithelioid differentiation in GISTs. An immunohistochemical study of 104 cases
<p>Abstract</p> <p>Background</p> <p>Molecular analyses of the <it>c-kit </it>and <it>PDGFRα </it>genes have contributed greatly to our understanding of the development of gastrointestinal stromal tumors (GISTs), but little is known about their malignant potential. The aim of our study was to evaluate cell cycle regulators as potential prognostic markers in GISTs.</p> <p>Methods</p> <p>We investigated 104 KIT positive GISTs from various tumor sites in immunoassays on CD34, Ki67 and particularly on P53, BCL-2 and Cyclin D1. The results were compared with tumor size, mitotic rate, proliferative activity, histological subtype, nuclear atypia and risk assessment according to Fletcher and Miettinen. Occurrence of metastases and survival were also taken into account.</p> <p>Results</p> <p>The expression of P53 was significantly correlated with high risk criteria towards malignancy and epithelioid differentiation in GISTs. Likewise P53 label correlated significantly with the established prognostic indicators: tumor size, mitotic rate, nuclear atypia and proliferative activity. Regarding the site of tumor presentation, P53 was not a decisive factor. BCL-2 and Cyclin D1 expression was not related to any of the prognostic indicators.</p> <p>Conclusion</p> <p>The present data identified P53 being a recommendable marker for predicting the risk of malignancy in GISTs. In addition, we found P53 significantly correlated with epithelioid tumor differentiation, independent of tumor site. BCL-2 and Cyclin D1, however, did not prove to be deciding markers for diagnosis and prognosis.</p
Genomics of Signaling Crosstalk of Estrogen Receptor α in Breast Cancer Cells
BACKGROUND: The estrogen receptor alpha (ERalpha) is a ligand-regulated transcription factor. However, a wide variety of other extracellular signals can activate ERalpha in the absence of estrogen. The impact of these alternate modes of activation on gene expression profiles has not been characterized. METHODOLOGY/PRINCIPAL FINDINGS: We show that estrogen, growth factors and cAMP elicit surprisingly distinct ERalpha-dependent transcriptional responses in human MCF7 breast cancer cells. In response to growth factors and cAMP, ERalpha primarily activates and represses genes, respectively. The combined treatments with the anti-estrogen tamoxifen and cAMP or growth factors regulate yet other sets of genes. In many cases, tamoxifen is perverted to an agonist, potentially mimicking what is happening in certain tamoxifen-resistant breast tumors and emphasizing the importance of the cellular signaling environment. Using a computational analysis, we predicted that a Hox protein might be involved in mediating such combinatorial effects, and then confirmed it experimentally. Although both tamoxifen and cAMP block the proliferation of MCF7 cells, their combined application stimulates it, and this can be blocked with a dominant-negative Hox mutant. CONCLUSIONS/SIGNIFICANCE: The activating signal dictates both target gene selection and regulation by ERalpha, and this has consequences on global gene expression patterns that may be relevant to understanding the progression of ERalpha-dependent carcinomas
Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12 155 patients
The Ki-67 antigen is used to evaluate the proliferative activity of breast cancer (BC); however, Ki-67's role as a prognostic marker in BC is still undefined. In order to better define the prognostic value of Ki-67/MIB-1, we performed a meta-analysis of studies that evaluated the impact of Ki-67/MIB-1 on disease-free survival (DFS) and/or on overall survival (OS) in early BC. Sixty-eight studies were identified and 46 studies including 12 155 patients were evaluable for our meta-analysis; 38 studies were evaluable for the aggregation of results for DFS, and 35 studies for OS. Patients were considered to present positive tumours for the expression of Ki-67/MIB-1 according to the cut-off points defined by the authors. Ki-67/MIB-1 positivity is associated with higher probability of relapse in all patients (HR=1.93 (95% confidence interval (CI): 1.74–2.14); P<0.001), in node-negative patients (HR=2.31 (95% CI: 1.83–2.92); P<0.001) and in node-positive patients (HR=1.59 (95% CI: 1.35–1.87); P<0.001). Furthermore, Ki-67/MIB-1 positivity is associated with worse survival in all patients (HR=1.95 (95% CI: 1.70–2.24; P<0.001)), node-negative patients (HR=2.54 (95% CI: 1.65–3.91); P<0.001) and node-positive patients (HR=2.33 (95% CI: 1.83–2.95); P<0.001). Our meta-analysis suggests that Ki-67/MIB-1 positivity confers a higher risk of relapse and a worse survival in patients with early BC
Computational analysis of expression of human embryonic stem cell-associated signatures in tumors
<p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p