54 research outputs found

    Discovery and characterization of a new family of lytic polysaccharide monooxygenases

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs

    The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization of biomass, especially in the sustainable generation of cellulosic bioethanol. We report here a structural determination of an LPMO-oligosaccharide complex, yielding detailed insights into the mechanism of action of these enzymes. Using a combination of structure and electron paramagnetic resonance spectroscopy, we reveal the means by which LPMOs interact with saccharide substrates. We further uncover electronic and structural features of the enzyme active site, showing how LPMOs orchestrate the reaction of oxygen with polysaccharide chains.We thank K. Rasmussen and R.M. Borup for experimental assistance, and MAXLAB, Sweden and the European Synchrotron Radiation Facility (ESRF), France, for synchrotron beam time and assistance. This work was supported by the UK Biotechnology and Biological Sciences Research Council (grant numbers BB/L000423 to P.D., G.J.D. and P.H.W., and BB/L021633/1 to G.J.D. and P.H.W.), Agence Française de l'Environnement et de la Maîtrise de l'Energie (grant number 1201C102 to B.H.), the Danish Council for Strategic Research (grant numbers 12-134923 to L.L.L. and 12-134922 to K.S.J.). Travel to synchrotrons was supported by the Danish Ministry of Higher Education and Science through the Instrument Center DANSCATT and the European Community's Seventh Framework Programme (FP7/2007-2013) under BioStruct-X (grant agreement 283570). L.M., S.F., S.C. and H.D. were supported by Institut de Chimie Moléculaire de Grenoble FR 2607, LabEx ARCANE (ANR-11-LABX-0003-01), the PolyNat Carnot Institute and the French Agence Nationale de la Recherche (PNRB2005-11).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nchembio.202

    Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site

    Structural and functional insight into human O-GlcNAcase.

    Get PDF
    O-GlcNAc hydrolase (OGA) removes O-linked N-acetylglucosamine (O-GlcNAc) from a myriad of nucleocytoplasmic proteins. Through co-expression and assembly of OGA fragments, we determined the three-dimensional structure of human OGA, revealing an unusual helix-exchanged dimer that lays a structural foundation for an improved understanding of substrate recognition and regulation of OGA. Structures of OGA in complex with a series of inhibitors define a precise blueprint for the design of inhibitors that have clinical value

    I Know My Neighbour: Individual Recognition in Octopus vulgaris

    Get PDF
    Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sightallowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at leas

    Does Environmental Enrichment Reduce Stress? An Integrated Measure of Corticosterone from Feathers Provides a Novel Perspective

    Get PDF
    Enrichment is widely used as tool for managing fearfulness, undesirable behaviors, and stress in captive animals, and for studying exploration and personality. Inconsistencies in previous studies of physiological and behavioral responses to enrichment led us to hypothesize that enrichment and its removal are stressful environmental changes to which the hormone corticosterone and fearfulness, activity, and exploration behaviors ought to be sensitive. We conducted two experiments with a captive population of wild-caught Clark's nutcrackers (Nucifraga columbiana) to assess responses to short- (10-d) and long-term (3-mo) enrichment, their removal, and the influence of novelty, within the same animal. Variation in an integrated measure of corticosterone from feathers, combined with video recordings of behaviors, suggests that how individuals perceive enrichment and its removal depends on the duration of exposure. Short- and long-term enrichment elicited different physiological responses, with the former acting as a stressor and birds exhibiting acclimation to the latter. Non-novel enrichment evoked the strongest corticosterone responses of all the treatments, suggesting that the second exposure to the same objects acted as a physiological cue, and that acclimation was overridden by negative past experience. Birds showed weak behavioral responses that were not related to corticosterone. By demonstrating that an integrated measure of glucocorticoid physiology varies significantly with changes to enrichment in the absence of agonistic interactions, our study sheds light on potential mechanisms driving physiological and behavioral responses to environmental change

    Lateralized behaviour as indicator of affective state in dairy cows

    Get PDF
    In humans, there is evidence that sensory processing of novel or threatening stimuli is right hemisphere dominated, especially in people experiencing negative affective states. There is also evidence for similar lateralization in a number of non-human animal species. Here we investigate whether this is also the case in domestic cattle that may experience long-term negative states due to commonly occurring conditions such as lameness. Health and welfare implications associated with pain in lame cows are a major concern in dairy farming. Behavioural tests combining animal behaviour and cognition could make a meaningful contribution to our understanding of disease-related changes in sensory processing in animals, and consequently enhance their welfare. We presented 216 lactating Holstein-Friesian cows with three different unfamiliar objects which were placed either bilaterally (e.g. two yellow party balloons, two black/white checkerboards) or hung centrally (a Kongâ„¢) within a familiar area. Cows were individually exposed to the objects on three consecutive days, and their viewing preference/eye use, exploration behaviour/nostril use, and stop position during approach was assessed. Mobility (lameness) was repeatedly scored during the testing period. Overall, a bias to view the right rather than the left object was found at initial presentation of the bilateral objects. More cows also explored the right object rather than the left object with their nose. There was a trend for cows appearing hesitant in approaching the objects by stopping at a distance to them, to then explore the left object rather than the right. In contrast, cows that approached the objects directly had a greater tendency to contact the right object. No significant preference in right or left eye/nostril use was found when cows explored the centrally-located object. We found no relationship between lameness and lateralized behaviour. Nevertheless, observed trends suggesting that lateralized behaviour in response to bilaterally located unfamiliar objects may reflect an immediate affective response are discussed. Further study is needed to understand the impact of long-term affective states on hemispheric dominance and lateralized behaviour
    • …
    corecore