51 research outputs found

    Carbon myopia: the urgent need for integrated social, economic and environmental action in the livestock sector

    Get PDF
    Livestock have long been integral to food production systems, often not by choice but by need. While our knowledge of livestock greenhouse gas emissions (GHG) mitigation has evolved, the prevailing focus has been - somewhat myopically on technology applications associated with mitigation.Here, we (1) examine the global distribution of livestock GHG emissions, (2) explore social, economic and environmental co-benefits and trade-offs associated with mitigation interventions, and (3) critique approaches for quantifying GHG emissions.This review uncovered many insights. First, while GHG emissions from ruminant livestock are greatest in low and middle-income countries (LMIC; globally, 66% of emissions are produced by Latin America and the Caribbean, East and southeast Asia, and south Asia), the majority of mitigation strategies are designed for developed countries. This serious concern is heightened by the fact that 80% of growth in global meat production over the next decade will occur in LMIC. Second, few studies concurrently assess social, economic and environmental aspects of mitigation. Of the 54 interventions reviewed, only 16 had triple-bottom line benefit with medium-high mitigation potential. Third, while efforts designed to stimulate adoption of strategies allowing both emissions reduction (ER) and carbon sequestration (CS) would achieve the greatest net emissions mitigation, CS measures have greater potential mitigation and co-benefits.The scientific community must shift attention away from the prevailing myopic lens on carbon, towards more holistic, systems-based, multi-metric approaches that carefully consider the raison d'être for livestock systems. Consequential life-cycle assessments and systems-aligned socio-economic planetary boundaries offer useful starting points that may uncover leverage points and cross-scale emergent properties. Derivation of harmonised, globally-reconciled sustainability metrics requires iterative dialogue between stakeholders at all levels. Greater emphasis on the simultaneous characterisation of multiple sustainability dimensions would help avoid situations where progress made in one area causes maladaptive outcomes in other areas

    Pyrite-induced hydroxyl radical formation and its effect on nucleic acids

    Get PDF
    BACKGROUND: Pyrite, the most abundant metal sulphide on Earth, is known to spontaneously form hydrogen peroxide when exposed to water. In this study the hypothesis that pyrite-induced hydrogen peroxide is transformed to hydroxyl radicals is tested. RESULTS: Using a combination of electron spin resonance (ESR) spin-trapping techniques and scavenging reactions involving nucleic acids, the formation of hydroxyl radicals in pyrite/aqueous suspensions is demonstrated. The addition of EDTA to pyrite slurries inhibits the hydrogen peroxide-to-hydroxyl radical conversion, but does not inhibit the formation of hydrogen peroxide. Given the stability of EDTA chelation with both ferrous and ferric iron, this suggests that the addition of the EDTA prevents the transformation by chelation of dissolved iron species. CONCLUSION: While the exact mechanism or mechanisms of the hydrogen peroxide-to-hydroxyl radical conversion cannot be resolved on the basis of the experiments reported in this study, it is clear that the pyrite surface promotes the reaction. The formation of hydroxyl radicals is significant because they react nearly instantaneously with most organic molecules. This suggests that the presence of pyrite in natural, engineered, or physiological aqueous systems may induce the transformation of a wide range of organic molecules. This finding has implications for the role pyrite may play in aquatic environments and raises the question whether inhalation of pyrite dust contributes to the development of lung diseases

    The Importance of the Stem Cell Marker Prominin-1/CD133 in the Uptake of Transferrin and in Iron Metabolism in Human Colon Cancer Caco-2 Cells

    Get PDF
    As the pentaspan stem cell marker CD133 was shown to bind cholesterol and to localize in plasma membrane protrusions, we investigated a possible function for CD133 in endocytosis. Using the CD133 siRNA knockdown strategy and non-differentiated human colon cancer Caco-2 cells that constitutively over-expressed CD133, we provide for the first time direct evidence for a role of CD133 in the intracellular accumulation of fluorescently labeled extracellular compounds. Assessed using AC133 monoclonal antibody, CD133 knockdown was shown to improve Alexa488-transferrin (Tf) uptake in Caco-2 cells but had no impact on FITC-dextran or FITC-cholera-toxin. Absence of effect of the CD133 knockdown on Tf recycling established a role for CD133 in inhibiting Tf endocytosis rather than in stimulating Tf exocytosis. Use of previously identified inhibitors of known endocytic pathways and the positive impact of CD133 knockdown on cellular uptake of clathrin-endocytosed synthetic lipid nanocapsules supported that CD133 impact on endocytosis was primarily ascribed to the clathrin pathway. Also, cholesterol extraction with methyl-β-cyclodextrine up regulated Tf uptake at greater intensity in the CD133high situation than in the CD133low situation, thus suggesting a role for cholesterol in the inhibitory effect of CD133 on endocytosis. Interestingly, cell treatment with the AC133 antibody down regulated Tf uptake, thus demonstrating that direct extracellular binding to CD133 could affect endocytosis. Moreover, flow cytometry and confocal microscopy established that down regulation of CD133 improved the accessibility to the TfR from the extracellular space, providing a mechanism by which CD133 inhibited Tf uptake. As Tf is involved in supplying iron to the cell, effects of iron supplementation and deprivation on CD133/AC133 expression were investigated. Both demonstrated a dose-dependent down regulation here discussed to the light of transcriptional and post-transciptional effects. Taken together, these data extend our knowledge of the function of CD133 and underline the interest of further exploring the CD133-Tf-iron network

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    Using Leaf Temperature to Improve Simulation of Heat and Drought Stresses in a Biophysical Model

    Get PDF
    Despite evidence that leaf temperatures can differ by several degrees from the air, crop simulation models are generally parameterised with air temperatures. Leaf energy budget is a process-based approach that can be used to link climate and physiological processes of plants, but this approach has rarely been used in crop modelling studies. In this study, a controlled environment experiment was used to validate the use of the leaf energy budget approach to calculate leaf temperature for perennial pasture species, and a modelling approach was developed utilising leaf temperature instead of air temperature to achieve a better representation of heat stress impacts on pasture growth in a biophysical model. The controlled environment experiment assessed the impact of two combined seven-day heat (control = 25/15 °C, day/night, moderate = 30/20 °C, day/night, and severe = 35/25 °C, day/night) and drought stresses (with seven-day recovery period between stress periods) on perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.). The leaf temperature of each species was modelled by using leaf energy budget equation and validated with measured data. All species showed limited homeothermy with the slope of 0.88 (P < 0.05) suggesting that pasture plants can buffer temperature variations in their growing environment. The DairyMod biophysical model was used to simulate photosynthesis during each treatment, using both air and leaf temperatures, and the patterns were compared with measured data using a response ratio (effect size compared to the well-watered control). The effect size of moderate heat and well-watered treatment was very similar to the measured values (~0.65) when simulated using T leaf, while T air overestimated the consecutive heat stress impacts (0.4 and 0). These results were used to test the heat stress recovery function (Tsum) of perennial ryegrass in DairyMod, finding that recovery after heat stress was well reproduced when parameterized with T sum = 20, while T sum = 50 simulated a long lag phase. Long term pasture growth rate simulations under irrigated conditions in south eastern Australia using leaf temperatures predicted 6-34% and 14-126% higher pasture growth rates, respectively at Ellinbank and Dookie, during late spring and summer months compared to the simulations using air temperatures. This study demonstrated that the simulation of consecutive heat and/or drought stress impacts on pasture production, using DairyMod, can be improved by using leaf temperatures instead of air temperature

    Growth and Physiological Responses of Temperate Pasture Species to Consecutive Heat and Drought Stresses

    Get PDF
    Heat and drought are two major limiting factors for perennial pasture production in south eastern Australia. Although previous studies have focused on the effects of prolonged heat and drought stresses on pasture growth and physiology, the effects of short term recurring combined heat and drought stresses and the recovery from them have not been studied in detail. A controlled environment experiment was conducted to investigate the growth and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.) plants exposed to two consecutive seven day heat (control = 25/15 °C day/night; moderate = 30/20 °C day/night and severe = 35/30 °C day/night) and/or drought stresses each followed by a seven day recovery period. During the first moderate and severe heat and drought treatments, maximum photochemical efficiency of photosystem II (Fv/Fm), cell membrane permeability and relative leaf water content decreased in chicory and tall fescue compared to perennial ryegrass and cocksfoot. However, during the second moderate heat and drought treatment, all species showed less reduction in the same parameters suggesting that these species acclimated to consecutive moderate heat and drought stresses. Chicory was the only species that was not affected by the second severe heat and drought stress while physiological parameters of all grass species were reduced closer to minimum values. Irrigation mitigated the negative effects of heat stress by cooling the canopies 1–3 °C below air temperatures with the most cooling observed in chicory. All the species exposed to moderate heat and drought were fully recovered and those exposed to severe heat and drought recovered partially at the end of the experiment. These findings suggest that chicory may be a potential species for areas subject to frequent heat and drought stress
    • …
    corecore