31 research outputs found

    Second-line chemotherapy for patients with advanced gastric cancer: who may benefit?

    Get PDF
    No established second-line chemotherapy is available for patients with advanced gastric cancer failing to respond or progressing to first-line chemotherapy. However, 20–40% of these patients commonly receive second-line chemotherapy. We evaluated the influence of clinico-pathologic factors on the survival of 175 advanced gastric cancer patients, who received second-line chemotherapy at three oncology departments. Univariate and multivariate analyses found five factors which were independently associated with poor overall survival: performance status 2 (hazard ratio (HR), 1.79; 95% CI, 1.16–2.77; P=0.008), haemoglobin ⩽11.5 g l−1 (HR, 1.48; 95% CI, 1.06–2.05; P=0.019), CEA level >50 ng ml−1 (HR, 1.86; 95% CI, 1.21–2.88; P=0.004), the presence of greater than or equal to three metastatic sites of disease (HR, 1.72; 95% CI, 1.16–2.53; P=0.006), and time-to-progression under first-line chemotherapy ⩽6 months (HR, 1.97; 95% CI, 1.39–2.80; P<0.0001). A prognostic index was constructed dividing patients into low- (no risk factor), intermediate- (one to two risk factors), or high- (three to five risk factors) risk groups, and median survival times for each group were 12.7 months, 7.1 months, and 3.3 months, respectively (P<0.001). In the absence of data deriving from randomised trials, this analysis suggests that some easily available clinical factors may help to select patients with advanced gastric cancer who could derive more benefit from second-line chemotherapy

    Gender differences in the use of cardiovascular interventions in HIV-positive persons; the D:A:D Study

    Get PDF
    Peer reviewe

    Kinase-driven metabolic signalling as a predictor of response to carboplatin–paclitaxel adjuvant treatment in advanced ovarian cancers

    No full text
    Background: The biological mechanisms underlying early-and advanced-stage epithelial ovarian cancers (EOCs) are still poorly understood. This study explored kinase-driven metabolic signalling in early and advanced EOCs, and its role in tumour progression and response to carboplatin-paclitaxel treatment. Methods: Tumour epithelia were isolated from two independent sets of primary EOC (n-72 and 30 for the discovery and the validation sets, respectively) via laser capture microdissection. Reverse phase protein microarrays were used to broadly profile the kinase-driven metabolic signalling of EOC with particular emphasis on the LBK1-AMPK and AKT-mTOR axes. Signalling activation was compared between early and advanced lesions, and carboplatin-paclitaxel-sensitive and -resistant tumours. Results: Advanced EOCs were characterised by a heterogeneous kinase-driven metabolic signature and decreased phosphorylation of the AMPK-AKT-mTOR axis compared to early EOC (P<0.05 for AMPK alpha T172, AMPK alpha 1 S485, AMPK beta 1 S108, AKT S473 and T308, mTOR S2448, p70S6 S371, 4EBP1 S65, GSK-3 alpha/beta S21/9, FOXO1 T24/FOXO3 T32, and FOXO1 S256). Advanced tumours with low relative activation of the metabolic signature and increased FOXO1 T24/FOXO3 T32 phosphorylation (P=0.041) were associated with carboplatin-paclitaxel resistance. Conclusions: If validated in a larger cohort of patients, the decreased AMPK-AKT-mTOR activation and phosphorylation of FOXO1 T24/FOXO3 T32 may help identify carboplatin-paclitaxel-resistant EOC patients.College of Science, George Mason University, the Istituto Superiore di Sanita (Programma Italia-USA Oncoproteomica) [527/B4/4]; University of Brescia, Italy12 month embargo; published online: 29 June 2017 / Creative Commons Attribution-NonCommercial-Share-Alike 3.0This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore