27 research outputs found

    Seed Dispersal Anachronisms: Rethinking the Fruits Extinct Megafauna Ate

    Get PDF
    Background: Some neotropical, fleshy-fruited plants have fruits structurally similar to paleotropical fruits dispersed by megafauna (mammals.10 3 kg), yet these dispersers were extinct in South America 10–15 Kyr BP. Anachronic dispersal systems are best explained by interactions with extinct animals and show impaired dispersal resulting in altered seed dispersal dynamics. Methodology/Principal Findings: We introduce an operational definition of megafaunal fruits and perform a comparative analysis of 103 Neotropical fruit species fitting this dispersal mode. We define two megafaunal fruit types based on previous analyses of elephant fruits: fruits 4–10 cm in diameter with up to five large seeds, and fruits.10 cm diameter with numerous small seeds. Megafaunal fruits are well represented in unrelated families such as Sapotaceae, Fabaceae, Solanaceae, Apocynaceae, Malvaceae, Caryocaraceae, and Arecaceae and combine an overbuilt design (large fruit mass and size) with either a single or few (,3 seeds) extremely large seeds or many small seeds (usually.100 seeds). Within-family and within-genus contrasts between megafaunal and non-megafaunal groups of species indicate a marked difference in fruit diameter and fruit mass but less so for individual seed mass, with a significant trend for megafaunal fruits to have larger seeds and seediness. Conclusions/Significance: Megafaunal fruits allow plants to circumvent the trade-off between seed size and dispersal b

    L'orticaria.

    No full text

    Fructification phenology as an important tool in the recovery of iron mining areas in Minas Gerais, Brazil

    No full text
    "Canga" is a name given to the ferruginous rocky fields that can be found in the "Quadrilátero Ferrífero" of Minas Gerais, Brazil. The endemism and species richness make them areas of special biological importance, regarded as high-priority for conservation. Nevertheless, they are being threatened by intense mining activity. Aiming to understand more about this flora, this study was performed in order to determine the maturation or dispersal period of the fruits of four Canga species, Alibertia vaccinioides K.Schum. (Rubiaceae), Coccoloba acrostichoides Cham. (Polygonaceae), Miconia sellowiana Naudin (Melastomataceae), and one probable new species of Calyptranthes Sw. (Myrtaceae). Although fruit maturation or dispersal tended to occur at the end of the dry season, some asynchrony was observed in these species, with food sources being available during most of the year. This shows that these species have the potential to attract animals the whole year round, and planting them for the recovery of iron mining areas may increase the community's self-regeneration capacity, leading to a more successful restoration process
    corecore