468 research outputs found

    Impaired Autophagy of an Intracellular Pathogen Induced by a Crohn's Disease Associated ATG16L1 Variant

    Get PDF
    The genetic risk factors predisposing individuals to the development of inflammatory bowel disease are beginning to be deciphered by genome-wide association studies. Surprisingly, these new data point towards a critical role of autophagy in the pathogenesis of Crohn's disease. A single common coding variant in the autophagy protein ATG16L1 predisposes individuals to the development of Crohn's disease: while ATG16L1 encoding threonine at amino acid position 300 (ATG16L1*300T) confers protection, ATG16L1 encoding for alanine instead of threonine (ATG16L1*300A, also known as T300A) mediates risk towards the development of Crohn's disease. Here we report that, in human epithelial cells, the Crohn's disease-associated ATG16L1 coding variant shows impairment in the capture of internalized Salmonella within autophagosomes. Thus, we propose that the association of ATG16L1*300A with increased risk of Crohn's disease is due to impaired bacterial handling and lowered rates of bacterial capture by autophagy

    Genetic Evidence Supporting the Association of Protease and Protease Inhibitor Genes with Inflammatory Bowel Disease: A Systematic Review

    Get PDF
    As part of the European research consortium IBDase, we addressed the role of proteases and protease inhibitors (P/PIs) in inflammatory bowel disease (IBD), characterized by chronic mucosal inflammation of the gastrointestinal tract, which affects 2.2 million people in Europe and 1.4 million people in North America. We systematically reviewed all published genetic studies on populations of European ancestry (67 studies on Crohn's disease [CD] and 37 studies on ulcerative colitis [UC]) to identify critical genomic regions associated with IBD. We developed a computer algorithm to map the 807 P/PI genes with exact genomic locations listed in the MEROPS database of peptidases onto these critical regions and to rank P/PI genes according to the accumulated evidence for their association with CD and UC. 82 P/PI genes (75 coding for proteases and 7 coding for protease inhibitors) were retained for CD based on the accumulated evidence. The cylindromatosis/turban tumor syndrome gene (CYLD) on chromosome 16 ranked highest, followed by acylaminoacyl-peptidase (APEH), dystroglycan (DAG1), macrophage-stimulating protein (MST1) and ubiquitin-specific peptidase 4 (USP4), all located on chromosome 3. For UC, 18 P/PI genes were retained (14 proteases and 4protease inhibitors), with a considerably lower amount of accumulated evidence. The ranking of P/PI genes as established in this systematic review is currently used to guide validation studies of candidate P/PI genes, and their functional characterization in interdisciplinary mechanistic studies in vitro and in vivo as part of IBDase. The approach used here overcomes some of the problems encountered when subjectively selecting genes for further evaluation and could be applied to any complex disease and gene family

    A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies

    Get PDF
    Genotype imputation methods are now being widely used in the analysis of genome-wide association studies. Most imputation analyses to date have used the HapMap as a reference dataset, but new reference panels (such as controls genotyped on multiple SNP chips and densely typed samples from the 1,000 Genomes Project) will soon allow a broader range of SNPs to be imputed with higher accuracy, thereby increasing power. We describe a genotype imputation method (IMPUTE version 2) that is designed to address the challenges presented by these new datasets. The main innovation of our approach is a flexible modelling framework that increases accuracy and combines information across multiple reference panels while remaining computationally feasible. We find that IMPUTE v2 attains higher accuracy than other methods when the HapMap provides the sole reference panel, but that the size of the panel constrains the improvements that can be made. We also find that imputation accuracy can be greatly enhanced by expanding the reference panel to contain thousands of chromosomes and that IMPUTE v2 outperforms other methods in this setting at both rare and common SNPs, with overall error rates that are 15%–20% lower than those of the closest competing method. One particularly challenging aspect of next-generation association studies is to integrate information across multiple reference panels genotyped on different sets of SNPs; we show that our approach to this problem has practical advantages over other suggested solutions

    CD209 in inflammatory bowel disease: a case-control study in the Spanish population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of Ulcerative Colitis (UC) and Crohn's Disease (CD), considered together as Inflammatory Bowel Diseases (IBD), involves environmental and genetic factors. Although some genes are already known, the genetics underlying these diseases is complex and new candidates are continuously emerging. The <it>CD209 </it>gene is located in a region linked previously to IBD and a <it>CD209 </it>functional polymorphism (rs4804803) has been associated to other inflammatory conditions. Our aim was to study the potential involvement of this <it>CD209 </it>variant in IBD susceptibility.</p> <p>Methods</p> <p>We performed a case-control study with 515 CD patients, 497 UC patients and 731 healthy controls, all of them white Spaniards. Samples were typed for the <it>CD209 </it>single nucleotide polymorphism (SNP) rs4804803 by TaqMan technology. Frequency comparisons were performed using χ<sup>2 </sup>tests.</p> <p>Results</p> <p>No association between <it>CD209 </it>and UC or CD was observed initially. However, stratification of UC patients by <it>HLA-DR3 </it>status, a strong protective allele, showed that carriage of the <it>CD209</it>_G allele could increase susceptibility in the subgroup of <it>HLA-DR3</it>-positive individuals (p = 0.03 OR = 1.77 95% CI 1.04–3.02, <it>vs. </it>controls).</p> <p>Conclusion</p> <p>A functional variant in the <it>CD209 </it>gene, rs4804803, does not seem to be influencing Crohn's disease susceptibility. However, it could be involved in the etiology or pathology of Ulcerative Colitis in <it>HLA-DR3</it>-positive individuals but further studies are necessary.</p

    Pathway analysis comparison using Crohn's disease genome wide association studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of biological annotation such as genes and pathways in the analysis of gene expression data has aided the identification of genes for follow-up studies and suggested functional information to uncharacterized genes. Several studies have applied similar methods to genome wide association studies and identified a number of disease related pathways. However, many questions remain on how to best approach this problem, such as whether there is a need to obtain a score to summarize association evidence at the gene level, and whether a pathway, dominated by just a few highly significant genes, is of interest.</p> <p>Methods</p> <p>We evaluated the performance of two pathway-based methods (Random Set, and Binomial approximation to the hypergeometric test) based on their applications to three data sets of Crohn's disease. We consider both the disease status as a phenotype as well as the residuals after conditioning on IL23R, a known Crohn's related gene, as a phenotype.</p> <p>Results</p> <p>Our results show that Random Set method has the most power to identify disease related pathways. We confirm previously reported disease related pathways and provide evidence for IL-2 Receptor Beta Chain in T cell Activation and IL-9 signaling as Crohn's disease associated pathways.</p> <p>Conclusions</p> <p>Our results highlight the need to apply powerful gene score methods prior to pathway enrichment tests, and that controlling for genes that attain genome wide significance enable further biological insight.</p

    Overexpression of CD97 in Intestinal Epithelial Cells of Transgenic Mice Attenuates Colitis by Strengthening Adherens Junctions

    Get PDF
    The adhesion G-protein-coupled receptor CD97 is present in normal colonic enterocytes but overexpressed in colorectal carcinoma. To investigate the function of CD97 in colorectal carcinogenesis, transgenic Tg(villin-CD97) mice overexpressing CD97 in enterocytes were generated and subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated tumorigenesis. Unexpectedly, we found a CD97 cDNA copy number-dependent reduction of DSS-induced colitis in Tg compared to wild-type (WT) mice that was confirmed by applying a simple DSS protocol. Ultrastructural analysis revealed that overexpression of CD97 strengthened lateral cell-cell contacts between enterocytes, which, in contrast, were weakened in CD97 knockout (Ko) mice. Transepithelial resistance was not altered in Tg and Ko mice, indicating that tight junctions were not affected. In Tg murine and normal human colonic enterocytes as well as in colorectal cell lines CD97 was localized preferentially in E-cadherin-based adherens junctions. CD97 overexpression upregulated membrane-bound but not cytoplasmic or nuclear β-catenin and reduced phospho-β-catenin, labeled for degradation. This was associated with inactivation of glycogen synthase kinase-3β (GSK-3β) and activation of Akt. In summary, CD97 increases the structural integrity of enterocytic adherens junctions by increasing and stabilizing junctional β-catenin, thereby regulating intestinal epithelial strength and attenuating experimental colitis

    MI-GWAS: a SAS platform for the analysis of inherited and maternal genetic effects in genome-wide association studies using log-linear models

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several platforms for the analysis of genome-wide association data are available. However, these platforms focus on the evaluation of the genotype inherited by affected (i.e. case) individuals, whereas for some conditions (e.g. birth defects) the genotype of the mothers of affected individuals may also contribute to risk. For such conditions, it is critical to evaluate associations with both the maternal and the inherited (i.e. case) genotype. When genotype data are available for case-parent triads, a likelihood-based approach using log-linear modeling can be used to assess both the maternal and inherited genotypes. However, available software packages for log-linear analyses are not well suited to the analysis of typical genome-wide association data (e.g. including missing data).</p> <p>Results</p> <p>An integrated platform, Maternal and Inherited Analyses for Genome-wide Association Studies <b>(</b>MI-GWAS) for log-linear analyses of maternal and inherited genetic effects in large, genome-wide datasets, is described. MI-GWAS uses SAS and LEM software in combination to appropriately format data, perform the log-linear analyses and summarize the results. This platform was evaluated using existing genome-wide data and was shown to perform accurately and relatively efficiently.</p> <p>Conclusions</p> <p>The MI-GWAS platform provides a valuable tool for the analysis of association of a phenotype or condition with maternal and inherited genotypes using genome-wide data from case-parent triads. The source code for this platform is freely available at <url>http://www.sph.uth.tmc.edu/sbrr/mi-gwas.htm</url>.</p

    Investigation of Multiple Susceptibility Loci for Inflammatory Bowel Disease in an Italian Cohort of Patients

    Get PDF
    BACKGROUND: Recent GWAs and meta-analyses have outlined about 100 susceptibility genes/loci for inflammatory bowel diseases (IBD). In this study we aimed to investigate the influence of SNPs tagging the genes/loci PTGER4, TNFSF15, NKX2-3, ZNF365, IFNG, PTPN2, PSMG1, and HLA in a large pediatric- and adult-onset IBD Italian cohort. METHODS: Eight SNPs were assessed in 1,070 Crohn's disease (CD), 1,213 ulcerative colitis (UC), 557 of whom being diagnosed at the age of ≤16 years, and 789 healthy controls. Correlations with sub-phenotypes and major variants of NOD2 gene were investigated. RESULTS: The SNPs tagging the TNFSF15, NKX2-3, ZNF365, and PTPN2 genes were associated with CD (P values ranging from 0.037 to 7×10(-6)). The SNPs tagging the PTGER4, NKX2-3, ZNF365, IFNG, PSMG1, and HLA area were associated with UC (P values 0.047 to 4×10(-5)). In the pediatric cohort the associations of TNFSF15, NKX2-3 with CD, and PTGER4, NKX2-3, ZNF365, IFNG, PSMG1 with UC, were confirmed. Association with TNFSF15 and pediatric UC was also reported. A correlation with NKX2-3 and need for surgery (P  =  0.038), and with HLA and steroid-responsiveness (P  =  0.024) in UC patients was observed. Moreover, significant association in our CD cohort with TNFSF15 SNP and colonic involvement (P  =  0.021), and with ZNF365 and ileal location (P  =  0.024) was demonstrated. CONCLUSIONS: We confirmed in a large Italian cohort the associations with CD and UC of newly identified genes, both in adult and pediatric cohort of patients, with some influence on sub-phenotypes
    corecore