40 research outputs found

    NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features

    Get PDF
    Thyroid cancer therapy is based on surgery followed by radioiodine treatment. The incorporation of radioiodine by cancer cells is mediated by sodium iodide symporter (NIS) (codified by the SLC5A5 gene), that is functional only when targeted to the cell membrane. We aimed to evaluate if NIS expression in thyroid primary tumors would be helpful in predicting tumor behavior, response to therapy and prognosis. NIS expression was addressed by qPCR and immunohistochemistry. In order to validate our data, we also studied SLC5A5 expression on 378 primary papillary thyroid carcinomas from The Cancer Genome Atlas (TCGA) database. In our series, SLC5A5 expression was lower in carcinomas with vascular invasion and with extrathyroidal extension and in those harboring BRAFV600E mutation. Analysis of SLC5A5 expression from TCGA database confirmed our results. Furthermore, it showed that larger tumors, with locoregional recurrences and/or distant metastases or harboring RAS, BRAF and/or TERT promoter (TERTp) mutations presented significantly less SLC5A5 expression. Regarding immunohistochemistry, 12/211 of the cases demonstrated NIS in the membrane of tumor cells, those cases showed variable outcomes concerning therapy success, prognosis and all but one were wild type for BRAF, NRAS and TERTp mutations. SLC5A5 mRNA lower expression is associated with features of aggressiveness and with key genetic alterations involving BRAF, RAS and TERTp. Mutations in these genes seem to decrease protein expression and its targeting to the cell membrane. SLC5A5 mRNA expression is more informative than NIS immunohistochemical expression regarding tumor aggressiveness and prognostic features.This study was supported by FCT (‘Portuguese Foundation for Science and Technology’) through PhD grants to Catarina Tavares (SFRH/BD/87887/2012), Ana Pestana (SFRH/BD/110617/2015), Rui Batista (SFRH/BD/111321/2015) and by a CNPq PhD grant (‘National Counsel of Technological and Scientific Development’, Brazil), Science without Borders, Process n# 237322/2012-9 for Luciana Ferreira. Miguel Melo received a grant from Genzyme for the research project ‘Molecular biomarkers of prognosis and response to therapy in differentiated thyroid carcinomas’. Further funding was obtained from FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project ‘Institute for Research and Innovation in Health Sciences’ (POCI-01-0145-FEDER-007274) and by the project ‘Advancing cancer research: from basic knowledgement to application’; NORTE-01-0145-FEDER-000029; ‘Projetos Estruturados de I&D&I’, funded by Norte 2020-Programa Operacional Regional do Norte. This work was also financed by Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo through a grant ‘Prof. E Limbert Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo/Sanofi-Genzyme in thyroid pathology’

    Sensitive diagnosis of cutaneous leishmaniasis by lesion swab sampling coupled to qPCR

    Get PDF
    Variation in clinical accuracy of molecular diagnostic methods for cutaneous leishmaniasis (CL) is commonly observed depending on the sample source, the method of DNA recovery and the molecular test. Few attempts have been made to compare these variables. Two swab and aspirate samples from lesions of patients with suspected CL (n=105) were evaluated alongside standard diagnosis by microscopic detection of amastigotes or culture of parasites from lesion material. Three DNA extraction methods were compared: Qiagen on swab and aspirate specimens, Isohelix on swabs and Boil/Spin of lesion aspirates. Recovery of Leishmania DNA was evaluated for each sample type by real-time polymerase chain reaction detection of parasitic 18S rDNA, and the diagnostic accuracy of the molecular method determined. Swab sampling combined with Qiagen DNA extraction was the most efficient recovery method for Leishmania DNA, and was the most sensitive (98%; 95% CI: 91-100%) and specific (84%; 95% CI: 64-95%) approach. Aspirated material was less sensitive at 80% (95% CI: 70-88%) and 61% (95% CI: 50-72%) when coupled to Qiagen or Boil-Spin DNA extraction, respectively. Swab sampling of lesions was painless, simple to perform and coupled with standardized DNA extraction enhances the feasibility of molecular diagnosis of C

    Large-scale comparative genomic ranking of taxonomically restricted genes (TRGs) in bacterial and archaeal genomes

    Get PDF
    BACKGROUND: Lineage-specific, or taxonomically restricted genes (TRGs), especially those that are species and strain-specific, are of special interest because they are expected to play a role in defining exclusive ecological adaptations to particular niches. Despite this, they are relatively poorly studied and little understood, in large part because many are still orphans or only have homologues in very closely related isolates. This lack of homology confounds attempts to establish the likelihood that a hypothetical gene is expressed and, if so, to determine the putative function of the protein. METHODOLOGY/PRINCIPAL FINDINGS: We have developed "QIPP" ("Quality Index for Predicted Proteins"), an index that scores the "quality" of a protein based on non-homology-based criteria. QIPP can be used to assign a value between zero and one to any protein based on comparing its features to other proteins in a given genome. We have used QIPP to rank the predicted proteins in the proteomes of Bacteria and Archaea. This ranking reveals that there is a large amount of variation in QIPP scores, and identifies many high-scoring orphans as potentially "authentic" (expressed) orphans. There are significant differences in the distributions of QIPP scores between orphan and non-orphan genes for many genomes and a trend for less well-conserved genes to have lower QIPP scores. CONCLUSIONS: The implication of this work is that QIPP scores can be used to further annotate predicted proteins with information that is independent of homology. Such information can be used to prioritize candidates for further analysis. Data generated for this study can be found in the OrphanMine at http://www.genomics.ceh.ac.uk/orphan_mine

    Comparison of Four Types of Membrane Bioreactor Systems in Terms of Shear Stress over the Membrane Surface using Computational Fluid Dynamics

    No full text
    Membrane bioreactors (MBRs) have been used successfully in biological wastewater treatment to solve the perennial problem of effective solids–liquid separation. A common problem with MBR systems is clogging of the modules and fouling of the membrane, resulting in frequent cleaning and replacement, which makes the system less appealing for full-scale applications. It has been widely demonstrated that the filtration performances in MBRs can be greatly improved with a two-phase flow (sludge–air) or higher liquid cross-flow velocities. However, the optimization process of these systems is complex and requires knowledge of the membrane fouling, hydrodynamics and biokinetics. Modern tools such as computational fluid dynamics (CFD) can be used to diagnose and understand the two-phase flow in an MBR. Four cases of different MBR configurations are presented in this work, using CFD as a tool to develop and optimize these systems.</jats:p

    Energy Consumption in Terms of Shear Stress for Two Types of Membrane Bioreactors used for Municipal Wastewater Treatment Processes

    No full text
    Two types of submerged membrane bioreactors (MBR): hollow fiber (HF) and hollow sheet (HS), have been studied and compared in terms of energy consumption and average shear stress over the membrane wall. The analysis of energy consumption was made using the correlation to determine the blower power and the blower power demand per unit of permeate volume. Results showed that for the system geometries considered, in terms the of the blower power, the HF MBR requires less power compared to HS MBR. However, in terms of blower power per unit of permeate volume, the HS MBR requires less energy. The analysis of shear stress over the membrane surface was made using computational fluid dynamics (CFD) modelling. Experimental measurements for the HF MBR were compared with the CFD model and an error less that 8% was obtained. For the HS MBR, experimental measurements of velocity profiles were made and an error of 11% was found. This work uses an empirical relationship to determine the shear stress based on the ratio of aeration blower power to tank volume. This relationship is used in bubble column reactors and it is extrapolate to determine shear stress on MBR systems. This relationship proved to be overestimated by 28% compared to experimental measurements and CFD results. Therefore, a corrective factor is included in the relationship in order to account for the membrane placed inside the bioreactor
    corecore