503 research outputs found
Development of a perturbation generator for vortex stability studies
Theory predicts vortex instability when subjected to certain types of disturbances. It was desired to build a device which could introduce controlled velocity perturbations into a trailing line vortex in order to study the effects on stability. A perturbation generator was designed and manufactured which can be attached to the centerbody of an airfoil type vortex generator. Details of design tests and manufacturing of the perturbation generator are presented. The device produced controlled perturbation with frequencies in excess of 250 Hz. Preliminary testing and evaluation of the perturbation generator performance was conducted in a 4 inch cylindrical pipe. Observations of vortex shedding frequencies from a centerbody were measured. Further evaluation with the perturbation generator attached to the vortex generator in a 2 x 3 foot wind tunnel were also conducted. Hot-wire anemometry was used to confirm the perturbation generator's ability to introduce controlled frequency fluctuations. Comparison of the energy levels of the disturbances in the vortex core was made between locations 42 chord lengths and 15 chord lengths downstream
Transcriptional repression of Hox genes by C. elegans HP1/HPL and H1/HIS-24.
Elucidation of the biological role of linker histone (H1) and heterochromatin protein 1 (HP1) in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2) and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5), which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males
Activity and functional significance of the renal kallikrein-kinin-system in polycystic kidney disease of the rat
Activity and functional significance of the renal kallikrein-kinin-system in polycystic kidney disease of the rat.BackgroundThe kallikrein-kinin-system is a complex multienzymatic system that has been implicated in the control of systemic blood pressure, glomerular filtration rate, and proteinuria. The present study investigated its functional role in rat polycystic kidney disease (PKD), which is characterized by progressive renal failure and proteinuria in the absence of systemic hypertension and stimulated renin-angiotensin-system.MethodsKallikrein and bradykinin levels were measured in plasma and urine of rats with polycystic kidneys and compared to non-affected controls (SD) and rats with reduced renal mass. The functional relevance of the kallikrein-kinin system (KKS) was assessed by the effects of a short-term treatment with either a selective bradykinin (BK) B1-receptor antagonist (des-Arg9-[Leu8]-BK), a B2-receptor antagonist (HOE 140), an angiotensin converting enzyme inhibitor (ramipril), or an angiotensin II-receptor blocker (HR 720) on systemic and renal parameters.ResultsUrine levels of kallikrein were increased threefold in 9-month-old PKD, and BK excretion was increased tenfold in 3-month and 30-fold in 9-month-old PKD compared to age-matched SD rats. Blood pressure in 9-month-old PKD rats was decreased to the same degree by ramipril and HR 720. In contrast, only ramipril and HOE 140 significantly reduced proteinuria and albuminuria, independent from creatinine clearance. This effect was accompanied by an increased excretion of bradykinin. The B1 receptor antagonist had no influence on functional renal parameters.ConclusionsThe present study demonstrates an age-dependent activation of the renal KKS in rats with polycystic kidney disease. The bradykinin B2-receptor is involved in the pathogenesis of proteinuria, independent from systemic blood pressure or creatinine clearance. The antiproteinuric effect of ramipril in this model is angiotensin II-independent and related to its influence on the renal KKS
Aircraft design at the Naval Postgraduate School - Tactical waverider/long-range cargo aircraft
Aircraft Design, Systems, and Operations Meeting, 09 August 1993 - 11 August 1993The article of record as published may be located at https://doi.org/10.2514/6.1993-4007The graduate program of the Department of Aeronautics and Astronautics at the Naval Postgraduate School uniquely supports a comprehensive design program in aircraft, spacecraft, missile, helicopter, and engine design. This paper is focused on four aircraft configuration designs proposed by AA 4273 Military Aircraft Design course team members. The AA 4273 course is, in turn, supported by a growing research program to enhance and further develop the methodology of aircraft design. This design effort has received considerable support from the NASA/USRA Advanced Design Program in Aeronautics. Specifically, two design solutions for a long-range,carrier based, tactical, wave-rider configured fighter/interceptor aircraft are reviewed herein, as are two solutions for a global range military transport. Both types of aircraft were developed as a graduate student team response to specific design RFPs
Gene expression profiling of brains from bovine spongiform encephalopathy (BSE)-infected cynomolgus macaques
BACKGROUND:
Prion diseases are fatal neurodegenerative disorders whose pathogenesis mechanisms are not fully understood. In this context, the analysis of gene expression alterations occurring in prion-infected animals represents a powerful tool that may contribute to unravel the molecular basis of prion diseases and therefore discover novel potential targets for diagnosis and therapeutics. Here we present the first large-scale transcriptional profiling of brains from BSE-infected cynomolgus macaques, which are an excellent model for human prion disorders.
RESULTS:
The study was conducted using the GeneChip\uae Rhesus Macaque Genome Array and revealed 300 transcripts with expression changes greater than twofold. Among these, the bioinformatics analysis identified 86 genes with known functions, most of which are involved in cellular development, cell death and survival, lipid homeostasis, and acute phase response signaling. RT-qPCR was performed on selected gene transcripts in order to validate the differential expression in infected animals versus controls. The results obtained with the microarray technology were confirmed and a gene signature was identified. In brief, HBB and HBA2 were down-regulated in infected macaques, whereas TTR, APOC1 and SERPINA3 were up-regulated.
CONCLUSIONS:
Some genes involved in oxygen or lipid transport and in innate immunity were found to be dysregulated in prion infected macaques. These genes are known to be involved in other neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Our results may facilitate the identification of potential disease biomarkers for many neurodegenerative diseases
Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells
BACKGROUND: Osteosarcoma is a bone tumor that often affects children and young adults. Although a combination of surgery and chemotherapy has improved the survival rate in the past decades, local recurrence and metastases still develop in 40% of patients. A definite therapy is yet to be determined for osteosarcoma. Anti- tumor compound and a metabolite of estrogen, 2-methoxyestradiol (2-ME) induces cell death in osteosarcoma cells. In this report, we have investigated whether interferon (IFN) pathway is involved in 2-ME-induced anti-tumor effects in osteosarcoma cells. METHODS: 2-ME effects on IFN mRNA levels were determined by Real time PCR analysis. Transient transfections followed by reporter assays were used for investigating 2-ME effects on IFN-pathway. Western blot analyses were used to measure protein and phosphorylation levels of IFN-regulated eukaryotic initiation factor-2 alpha (eIF-2α). RESULTS: 2-ME regulates IFN and IFN-mediated effects in osteosarcoma cells. 2 -ME induces IFN gene activity and expression in osteosarcoma cells. 2-ME treatment induced IFN-stimulated response element (ISRE) sequence-dependent transcription and gamma-activated sequence (GAS)-dependent transcription in several osteosarcoma cells. Whereas, 2-ME did not affect IFN gene and IFN pathways in normal primary human osteoblasts (HOB). 2-ME treatment increased the phosphorylation of eIF-2α in osteosarcoma cells. Furthermore, analysis of osteosarcoma tissues shows that the levels of phosphorylated form of eIF-2α are decreased in tumor compared to normal controls. CONCLUSIONS: 2-ME treatment triggers the induction and activity of IFN and IFN pathway genes in 2-ME-sensitive osteosarcoma tumor cells but not in 2-ME-resistant normal osteoblasts. In addition, IFN-signaling is inhibited in osteosarcoma patients. Thus, IFN pathways play a role in osteosarcoma and in 2-ME-mediated anti-proliferative effects, and therefore targeted induction of IFN signaling could lead to effective treatment strategies in the control of osteosarcoma
Geographic Variation in Influenza Vaccination Disparities Between Hispanic and Non-Hispanic White US Nursing Home Residents
BACKGROUND: Disparities in influenza vaccination exist between Hispanic and non-Hispanic White US nursing home (NH) residents, but the geographic areas with the largest disparities remain unknown. We examined how these racial/ethnic disparities differ across states and hospital referral regions (HRRs). METHODS: This retrospective cohort study included >14 million short-stay and long-stay US NH resident-seasons over 7 influenza seasons from October 1, 2011, to March 31, 2018, where residents could contribute to 1 or more seasons. Residents were aged â„65â
years and enrolled in Medicare fee-for-service. We used the Medicare Beneficiary Summary File to ascertain race/ethnicity and Minimum Data Set assessments for influenza vaccination. We calculated age- and sex-standardized percentage point (pp) differences in the proportions vaccinated between non-Hispanic White and Hispanic (any race) resident-seasons. Positive pp differences were considered disparities, where the proportion of non-Hispanic White residents vaccinated was greater than the proportion of Hispanic residents vaccinated. States and HRRs with â„100 resident-seasons per ageâsex stratum per racial/ethnic group were included in analyses. RESULTS: Among 7 442 241 short-stay resident-seasons (94.1% non-Hispanic White, 5.9% Hispanic), the median standardized disparities in influenza vaccination were 4.3 pp (minimum, maximum: 0.3, 19.2; n = 22 states) and 2.8 pp (minimum, maximum: â3.6, 10.3; n = 49 HRRs). Among 6 758 616 long-stay resident-seasons (93.7% non-Hispanic White, 6.5% Hispanic), the median standardized differences were â0.1 pp (minimum, maximum: â4.1, 11.4; n = 18 states) and â1.8 pp (minimum, maximum: â6.5, 7.6; n = 34 HRRs). CONCLUSIONS: Wide geographic variation in influenza vaccination disparities existed across US states and HRRs. Localized interventions targeted toward areas with high disparities may be a more effective strategy to promote health equity than one-size-fits-all national interventions
Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affectcartilage development
Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the roleof Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre,Osx1-Cre, and Col2a1-Cre drivers, respectively. Wild-type and conditional knockout mice were phenotypically assessed by grossmorphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated usingRNA-sequencing, histologic evaluation, and western blotting. Aged mice with Ezh2 deficiency were also evaluated for prematuredevelopment of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age, although caused no other gross developmentaleffects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3lysine 27 (H3K27me3) and altered differentiation in vitro. RNA-seq analysis revealed enrichment of an osteogenic gene expressionprofile in Ezh2 deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes withoutinducing excessive hypertrophy or premature osteoarthritis in vivo. In summary, loss of Ezh2 reduced H3K27me3 levels, increased expression of osteogenic genes in chondrocytes, and resulted ina transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondralossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage-commitment
Recommended from our members
High-energy ion processing of materials for improved hardcoatings
Research has been directed toward use of economically viable ion processing strategies for production and improvement of hardcoatings. Processing techniques were high-energy ion implantation and electron cyclotron resonance microwave plasma processing. Subject materials were boron suboxides, Ti-6Al-4V alloy, CoCrMo alloy (a Stellite{trademark}), and electroplated Cr. These materials may be regarded either as coatings themselves (which might be deposited by thermal spraying, plasma processing, etc.) or in some cases, as substrates whose surfaces can be improved. hardness and other properties in relation to process variables are reported
- âŠ