1,135 research outputs found

    A potential new method for determining the temperature of cool stars

    Get PDF
    ‘The definitive version is available at www.blackwell-synergy.com.’ Copyright Blackwell Publishing DOI: 10.1111/j.1365-2966.2008.13489.xPeer reviewe

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    AlGaAs/GaAs/AlGaAs quantum wells as a sensitive tool for the MOVPE reactor environment

    Full text link
    We present in this work a simple Quantum Well (QW) structure consisting of GaAs wells with AlGaAs barriers as a probe for measuring the performance of arsine purifiers within a MetalOrganic Vapour Phase Epitaxy system. Comparisons between two different commercially available purifiers are based on the analysis of low temperature photoluminescence emission spectra from thick QWs, grown on GaAs substrates misoriented slightly from (100). Neutral excitons emitted from these structures show extremely narrow linewidths, comparable to those which can be obtained by Molecular Beam Epitaxy in an ultra-high vacuum environment, suggesting that purifications well below the 1ppb level are needed to achieve high quality quantum well growth

    Calculation of magnetic anisotropy energy in SmCo5

    Full text link
    SmCo5 is an important hard magnetic material, due to its large magnetic anisotropy energy (MAE). We have studied the magnetic properties of SmCo5 using density functional theory (DFT) calculations where the Sm f-bands, which are difficult to include in DFT calculations, have been treated within the LDA+U formalism. The large MAE comes mostly from the Sm f-shell anisotropy, stemming from an interplay between the crystal field and the spin-orbit coupling. We found that both are of similar strengths, unlike some other Sm compounds, leading to a partial quenching of the orbital moment (f-states cannot be described as either pure lattice harmonics or pure complex harmonics), an optimal situation for enhanced MAE. A smaller portion of the MAE can be associated with the Co-d band anisotropy, related to the peak in the density of states at the Fermi energy. Our result for the MAE of SmCo5, 21.6 meV/f.u., agrees reasonably with the experimental value of 13-16 meV/f.u., and the calculated magnetic moment (including the orbital component) of 9.4 mu_B agrees with the experimental value of 8.9 mu_B.Comment: Submitted to Phys. Rev.

    Critical exponents of directed percolation measured in spatiotemporal intermittency

    Get PDF
    A new experimental system showing a transition to spatiotemporal intermittency is presented. It consists of a ring of hundred oscillating ferrofluidic spikes. Four of five of the measured critical exponents of the system agree with those obtained from a theoretical model of directed percolation.Comment: 7 pages, 12 figures, submitted to PR

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    A frustrated quantum spin-{\boldmath s} model on the Union Jack lattice with spins {\boldmath s>1/2}

    Full text link
    The zero-temperature phase diagrams of a two-dimensional frustrated quantum antiferromagnetic system, namely the Union Jack model, are studied using the coupled cluster method (CCM) for the two cases when the lattice spins have spin quantum number s=1s=1 and s=3/2s=3/2. The system is defined on a square lattice and the spins interact via isotropic Heisenberg interactions such that all nearest-neighbour (NN) exchange bonds are present with identical strength J1>0J_{1}>0, and only half of the next-nearest-neighbour (NNN) exchange bonds are present with identical strength J2≡κJ1>0J_{2} \equiv \kappa J_{1} > 0. The bonds are arranged such that on the 2×22 \times 2 unit cell they form the pattern of the Union Jack flag. Clearly, the NN bonds by themselves (viz., with J2=0J_{2}=0) produce an antiferromagnetic N\'{e}el-ordered phase, but as the relative strength κ\kappa of the frustrating NNN bonds is increased a phase transition occurs in the classical case (s→∞s \rightarrow \infty) at κccl=0.5\kappa^{\rm cl}_{c}=0.5 to a canted ferrimagnetic phase. In the quantum cases considered here we also find strong evidence for a corresponding phase transition between a N\'{e}el-ordered phase and a quantum canted ferrimagnetic phase at a critical coupling κc1=0.580±0.015\kappa_{c_{1}}=0.580 \pm 0.015 for s=1s=1 and κc1=0.545±0.015\kappa_{c_{1}}=0.545 \pm 0.015 for s=3/2s=3/2. In both cases the ground-state energy EE and its first derivative dE/dκdE/d\kappa seem continuous, thus providing a typical scenario of a second-order phase transition at κ=κc1\kappa=\kappa_{c_{1}}, although the order parameter for the transition (viz., the average ground-state on-site magnetization) does not go to zero there on either side of the transition.Comment: 1
    • …
    corecore