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Abstract In this article, we prove that exact representations of dimer and plaquette valence-
bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the
usual coupled cluster method (CCM) from independent-spin product (e.g. Néel) model
states. We show that we are able to provide good results for both the ground-state energy and
the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM.
As a first example, we investigate the spin-half J1–J2 model for the linear chain, and we
show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1 = 0.5.
The dimerized phase is stable over a range of values for J2/J1 around 0.5, and results for
the ground-state energies are in good agreement with the results of exact diagonalizations
of finite-length chains in this regime. We present evidence of symmetry breaking by consid-
ering the ket- and bra-state correlation coefficients as a function of J2/J1. A radical change
is also observed in the behavior of the CCM sublattice magnetization as we enter the dimer-
ized phase. We then consider the Shastry-Sutherland model and demonstrate that the CCM
can span the correct ground states in both the Néel and the dimerized phases. Once again,
very good results for the ground-state energies are obtained. We find CCM critical points
of the bra-state equations that are in agreement with the known phase transition point for
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this model. The results for the sublattice magnetization remain near to the “true” value of
zero over much of the dimerized regime, although they diverge exactly at the critical point.
Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lat-
tice corresponding to the magnetic material CaV4O9 (CAVO). We show that we are able to
provide excellent results for the ground-state energy in each of the plaquette-ordered, Néel-
ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states
are reproduced by the CCM ket state in their relevant limits. Furthermore, we estimate the
range over which the Néel order is stable, and we find the CCM result is in reasonable agree-
ment with the results obtained by other methods. Our new approach has the dual advantages
that it is simple to implement and that existing CCM codes for independent-spin product
model states may be used from the outset. Furthermore, it also greatly extends the range of
applicability to which the CCM may be applied. We believe that the CCM now provides
an excellent choice of method for the study of systems with valence-bond quantum ground
states.

Keywords Quantum magnetism · Coupled cluster method (CCM) · Valence-Bond crystals

1 Introduction

Lattice quantum spin models not only provide useful models of many physically realizable
magnetic systems but also serve as prototypical models of strongly interacting quantum
many-body systems. Indeed, the basic models of quantum magnets are given by lattice spin
models that often display rich quantum phase transitions between ground states of different
order as some control parameter is varied. Their collective behavior is extremely complex
due to the presence of strong quantum effects. Furthermore, the underlying crystallographic
lattices for these materials may exhibit complex symmetries. Their rich phase diagrams
include exotic phases of novel quantum order due to the strong interplay between competing
interactions and large quantum fluctuations. For all of these reasons they have naturally
provided an excellent test-bed where the various methods of quantum many-body theory
can be applied and further refined.

Of particular interest is the formation of dimer- and plaquette-ordered singlet ground
states (so-called valence-bond crystal (VBC) states) in quantum spin systems. Often, the
formation of enhanced dimer or plaquette correlations is driven by frustration, which can
increase quantum fluctuations and which may result in such gapped rotationally-invariant
quantum paramagnetic states [1–27]. Usually, VBC states are complicated quantum many-
body states, see, e.g., the Heisenberg antiferromagnet on the star lattice [12, 26, 27]. How-
ever, for certain systems the VBC states are simple exact product eigenstates of the un-
derlying Heisenberg interaction Hamiltonian. Examples for the appearance of such exact
VBC product eigenstates are the spin-half J1–J2 model on the linear chain [1–10] at the
point J2/J1 = 0.5 (the so-called Majumdar-Ghosh point) and the Shastry-Sutherland model
[11–25]. Furthermore, it is often useful to distinguish between VBC phases that have the
same translational symmetry as the spin Hamiltonian and those that spontaneously break
the symmetry of the underlying spin lattice. Examples of the former case are the Shastry-
Sutherland model and the Heisenberg antiferromagnet on the star lattice, whereas the J1–J2

model on the linear chain is an example of spontaneous symmetry breaking.
Another mechanism for the formation of non-magnetic dimer or plaquette VBC ground

states that does not involve frustration is the competition between non-equivalent antifer-
romagnetic nearest-neighbor bonds. This may lead to the formation of local singlets of
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two (or four) coupled spins if the strengths of the non-equivalent bonds differ sufficiently
[12, 28–39]. By contrast to frustration, which yields competition in quantum as well as in
classical spin systems, this type of competition is present only in quantum systems. The
symmetry of the ground state follows the symmetry of the Hamiltonian in such cases.
An example of this is given by the nearest-neighbor models for the magnetic material
CaV4O9 of Refs. [28–34] in which one finds two non-equivalent antiferromagnetic nearest-
neighbor bonds J and J ′ belonging to dimers (J ′) or to four-spin plaquettes (J ). If these
non-equivalent nearest-neighbor bonds are different in strength then local singlet formation
may destroy Néel long-range order. As J ′/J becomes large, local singlets are formed on
dimers. Alternatively, local four-spin singlets on the plaquettes are formed for strong pla-
quette bonds J . Another example studied in the literature is the so-called J –J ′ model on
the square lattice, i.e., a model with a regular distribution of two different nearest-neighbor
bonds on the square lattice [35–40]. In both cases, the formation of local singlets suppresses
the magnetic Néel long-range order. However, the VBC ground state is now a complex
many-body state; with a simple product VBC state appearing only in the limits J ′/J → ∞
and J/J ′ → ∞.

In this article we focus on the application of the coupled cluster method (CCM)
to quantum Heisenberg antiferromagnets having VBC ground-state phases. The CCM
[25, 37, 39, 41–92] is one of the most powerful and most widely applied techniques of
modern-day microscopic quantum many-body theory. The CCM allows the inclusion of
multi-particle correlations into the ground- and excited-state wave functions in a controlled
and systematic manner. It has been applied to a great variety of different lattice quantum
spin systems with great success. In particular, it has been used successfully with model (or
reference) states built by independent-spin product states for which the choice of state for
the spin on each site is formally independent of the choice of all others. Often for these
independent-spin product model states the use of collinear states, such as the Néel state, is
possible where all spins are aligned parallel or antiparallel to one axis (e.g., the z-axis), see,
Refs. [55–61, 64–75, 77, 79, 82, 84–92]. However, noncollinear (e.g. spiral) model states
can be favorable for certain frustrated spin systems [25, 37, 63, 76, 78, 80, 83, 86]. Multi-
spin correlations are then included systematically on top of the independent-spin product
model states.

The CCM for independent-spin product model states may be applied to high orders by
using a computational implementation described in Refs. [64, 68, 72, 77, 80, 81]. In partic-
ular, it may be applied to lattices of complex crystallographic symmetry. Furthermore, it is
not constrained to systems with spin quantum number s = 1/2.

In previous work, non-classical VBC ordering has also been considered using the CCM
by employing directly valence-bond model states, i.e. two- or four-spin singlet product
states [62]. However, this earlier approach involves the direct use of products of localized
states (e.g., two-spin dimers or four-spin plaquettes) in the model state. Hence, this approach
requires that a whole new matrix-operator formalism be created for each new problem. Also,
the Hamiltonian and CCM ket- and bra-state operators must be written in terms of this new
matrix algebra. The CCM equations may be derived and solved once the commutation rela-
tionships between the operators have been established. Although formally straightforward,
this process can be tedious and time-consuming. Furthermore, the existing high-order CCM
formalism and codes also need to be amended extensively for each separate model consid-
ered.

In this article we use a quite different way to describe VBC states. Starting directly from
collinear independent-spin product model states, we discuss how we can form exact lo-
cal dimer or plaquette ground states within the CCM. This approach has the advantages
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of being conceptually simple and thus also of being easy to implement. Furthermore, we
can use directly the existing high-order CCM formalism, computer codes, and extrapolation
schemes. After first describing the new methodology, we apply the method to specific spin
models considered in the literature that exhibit dimer and plaquette ground states. By com-
parison with existing results, we demonstrate that the CCM provides good results for the
ground-state properties of these systems. We then conclude the article by considering the
implications of our results.

2 Method

2.1 CCM Formalism

The exact ket and bra ground-state energy eigenvectors, |�〉 and 〈�̃|, of a general many-
body system described by a Hamiltonian H ,

H |�〉 = Eg|�〉; 〈�̃|H = Eg〈�̃|, (1)

are parametrized within the normal (NCCM) version of the single-reference CCM as fol-
lows:

|�〉 = eS |�〉; S =
∑

I �=0

SIC
+
I ,

〈�̃| = 〈�|S̃e−S; S̃ = 1 +
∑

I �=0

S̃IC
−
I .

(2)

The normalized single model or reference state |�〉 is defined with respect to a suitable
set of (mutually commuting) many-spin creation operators {C+

I }. We note that the model
states are generally related to the classical ground states of the lattice spin system. These
states are products of single-spin eigenstates of some appropriately defined operator sz

i

whose direction in a set of global axes can differ from site to site, e.g., a typical such
states is: |�〉 = · · · ⊗ | ↑〉 ⊗ | ↓〉 ⊗ | ↑〉 ⊗ | ↓〉 ⊗ · · · (Néel state). However, we remark
also that planar model states or spiral model states in the global spin coordinate axes
(|�〉 = · · · ⊗ | →〉 ⊗ | ←〉 ⊗ | →〉 ⊗ | ←〉 ⊗ · · · and |�〉 = · · · ⊗ | ↑〉 ⊗ | ↗〉 ⊗ | →〉 ⊗ | ↘〉
⊗ | ↓〉 ⊗ | ↙〉 ⊗ · · ·, respectively) may also be considered. In order to make the CCM cal-
culations easier to carry out in practice, we generally rotate the local axes of the spins so
that they all appear notationally to point in the downwards z-direction. The model state is
then given by: |�〉 = · · · ⊗ | ↓〉 ⊗ | ↓〉 ⊗ | ↓〉 ⊗ | ↓〉 ⊗ · · ·. The interested reader is referred
to Refs. [25, 37, 63, 76, 78, 80, 83, 86] for more details about spiral model states and Refs.
[65, 89] for more details about planar model states.

The operators C+
I ≡ (C−

I )†, with C+
0 ≡ 1, have the property that 〈�|C+

I = 0 =
C−

I |�〉∀I �= 0. They form a complete set of multi-spin creation operators with respect to
the model state |�〉. Thus, the creation operators are represented simply as a product of
spin-raising operators s+

k ≡ sx
k + isy

k over the set of lattice sites {k} after rotation of the lo-
cal frames such that all spins appear to point downwards, as described above. The creation
operators are now given by C+

I ≡ s+
i1
s+
i2

· · · s+
il

. We note that the definitions of (2) imply the

normalization 〈�̃|�〉 = 〈�|�〉 = 1.
The determination of the correlation coefficients {SI , S̃I } is achieved by requiring the

ground-state energy expectation functional H̄ ({SI , S̃I }) ≡ 〈�̃|H |�〉 = 〈�|S̃e−SHeS |�〉 to
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be stationary with respect to variations in each of the (independent) variables of the full set.
We thereby derive the following coupled set of equations:

δH̄/δS̃I = 0 ⇒ 〈�|C−
I e−SHeS |�〉 = 0, ∀I �= 0; (3)

δH̄/δSI = 0 ⇒ 〈�|S̃e−S[H,C+
I ]eS |�〉 = 0, ∀I �= 0. (4)

Equation (3) also shows that the ground-state energy at the stationary point has the simple
form

Eg ≡ 〈�̃|H |�〉 = 〈�|S̃e−SHeS |�〉

= 〈�|
(

1 +
∑

I �=0

S̃IC
−
I

)
e−SHeS |�〉

= 〈�|e−SHeS |�〉 +
∑

I �=0

S̃I 〈�|C−
I e−SHeS |�〉

⇒ Eg = 〈�|e−SHeS |�〉. (5)

We see that the expectation value of the ground-state energy of (5) contains terms in S

only and so it also contains ket-state correlation coefficients only. Generally, however, we
need to use both the bra and ket states to find a ground-state expectation value. Indeed,
the ground-state energy is the only special case that requires just the ket-state alone. We
note also that this (bi-)variational formulation does not lead to an upper bound for Eg when
the summations for S and S̃ in (2) are truncated, due to the lack of exact hermiticity when
such approximations are made. However, it is also important to realize that the Hellmann-
Feynman theorem is preserved in all such approximations [54].

We note that any practical calculation requires an approximation to be made for both S

and S̃. The three most common schemes are: (1) the SUBn scheme, in which all correlations
involving only n or fewer spins are retained; (2) the SUBn–m sub-approximation, in which
all n-spin-flip clusters spanning a range of no more than m adjacent lattice sites are retained;
and (3) the “localized” LSUBm scheme, in which all multi-spin correlations over distinct
locales on the lattice defined by m or fewer contiguous sites are retained.

We use here an order parameter M ≡ −〈�̃|sz|�〉 that is thus defined to be the negative of
the ground-state expectation value of the operator sz ≡ 1

N

∑N

i=1 sz
i . Here N → ∞ is the total

number of spins on the lattice and, very importantly, each operator sz
i is defined with respect

to the local rotated spin axes on lattice site i, which are themselves defined by the choice
of particular model state |�〉, as explained previously. Clearly, by definition, for the original
model state, the order parameter M is simply −〈�| sz|�〉 = 1

2 . Quantum correlations (or
fluctuations) in the exact ground state will thus have the effect of decreasing M from this
maximal value. For the sake of ease of use and clarity we shall henceforth refer to the
order parameter M as the sublattice magnetization, although this terminology is strictly
only appropriate for antiferromagnetic ordering on a bipartite lattice. Hence, the sublattice
magnetization M in the local axes of the spins in which all spins in the model state |�〉 point
in the negative z-direction is given by

M = − 1

N

N∑

i=1

〈�̃|sz
i |�〉. (6)

This quantity is easily determined once the bra- and ket-state equations have been solved.
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2.2 Construction of CCM Valence-Bond Ket Ground States

Following on from our discussion above of the use of independent-spin product states as
CCM model states, we now present a method for creating VBC states within the CCM from
such independent-spin product model states. As an example, we consider the Heisenberg
model that has a Hamiltonian defined by

H =
∑

〈i,j 〉
si · sj , (7)

where the indices i and j run over all lattice sites on a given lattice. The brackets around
〈i, j〉 indicate that all nearest-neighbor pairs are counted once and once only. For the bipar-
tite lattices considered here (namely, the linear chain, the square lattice, and the “CAVO”
lattice), we choose a model state in which nearest-neighbor spins are antiparallel along, say,
the z-direction. The local frames of the “up” spins are rotated by 180◦ so that they point
downwards in these local axes. This is achieved by carrying out the following transforma-
tion of the local axes of these spins: sx → −sx ; sy → sy ; and, sz → −sz. The model state
is now formed from a product purely of “down” spins in the rotated spin coordinates, as
described above.

The Heisenberg Hamiltonian is now written in terms of the new spin axes by,

H = −
∑

〈i,j 〉

(
sz
i s

z
j + 1

2
{s−

i s−
j + s+

i s+
j }

)
. (8)

We note that the total spin in the “global” z-direction, sz
T = ∑N

i sz
i , is a conserved quantity

of the ground state in all of the models studied here.
We now present the method for creating VBC states from independent-spin product

model states. Let us consider for a moment the one-dimensional spin-half J1–J2 Heisen-
berg antiferromagnet. The relevant model state is the collinear Néel state [8, 63, 86, 87].
However, as mentioned above, the ground state for J2/J1 near to 0.5 breaks the translational
lattice symmetry and is two-fold degenerate (see also Sect. 3.1). In order to take into account
this property, we have to double the unit cell, i.e. the relevant unit cell has two neighboring
sites at points (0,0,0) and (1,0,0) and a single Bravais vector of (2,0,0)T . Note, however,
that such an explicit increase of the unit cells is not necessary for VBC phases that do not
break the translational lattice symmetry. The doubling of the unit cell, now enables us to
consider two distinct types of two-spin nearest-neighbor ket-state correlation coefficients;
in this way allowing to break the translational lattice symmetry. We call the two nearest-
neighbor ket-state correlation coefficients S a

2 and S b
2 , where, we define S a

2 to connect those
nearest-neighbor sites between different unit cells and S b

2 to connect those nearest-neighbor
sites within each unit cell. With respect to the rotated spin coordinates, we may now con-
struct via (2) a simple dimerized product CCM ket state given by either S a

2 = 1 and S b
2 = 0

or S a
2 = 0 and S b

2 = 1 for S2 = S a
2

∑
ia

s+
ia
s+
ia+1 + S b

2

∑
ib

s+
ib
s+
ib+1, and where ia runs over all

sites with odd-numbered indices and ib runs over all sites with even-numbered indices. It is
obvious, that this choice: (i) breaks the lattice symmetry; and, (ii) represents two different
degenerate states. The proof that the above choice for S a

2 , S b
2 leads to dimerized product

states is as follows:

|�〉 = eS2 |�〉
= e(Sa

2 s+
1 s+

2 +Sb
2 s+

2 s+
3 +Sa

2 s+
3 s+

4 +Sb
2 s+

4 s+
5 +···)|�〉,
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S a
2 = 1; S b

2 = 0 ⇒ |�〉 = e(s+
1 s+

2 +s+
3 s+

4 +s+
5 s+

6 +···)|�〉
= (1 + s+

1 s+
2 )(1 + s+

3 s+
4 )(1 + s+

5 s+
6 ) · · · |�〉

= {| ↓1↓2〉 + | ↑1↑2〉} ⊗ {| ↓3↓4〉 + | ↑3↑4〉}
⊗ · · · , (9)

where the notation | ↓i〉 and | ↑i〉 indicates a ‘down’ or ‘up’ spin, respectively, localized to
site i. We note that (s+

i )2|�〉 = 0 ∀i is assumed in (9), which holds true for spin-half systems
such as those considered here.

Furthermore, we note that if the local axes of spins on one sublattice are “re-rotated”
such that ‘down’ spins become ‘up’ spins once again, i.e., so as to regain the Heisenberg
Hamiltonian of (7) in the global spin coordinate system, then the dimerized product state be-
comes the usual product of the nearest-neighbor dimer singlets, namely, (| ↑i↓j 〉 − | ↓i↑j 〉)
at nearest-neighboring sites i and j . Note that if such a dimerized product state becomes
the true ground state of a given spin problem (e.g., the spin-half linear chain J1–J2 model at
J2/J1 = 0.5—see below for more details) then for any level of LSUBm (m ≥ 2) approxima-
tion either S a

2 = 1 with all other ket-state correlation coefficients (i.e., including those for
m spins with m ≥ 2) equal to zero or S b

2 = 1 with all other ket-state correlation coefficients
equal to zero, is a valid ket ground-state solution to this problem.

The situation is different for the bra state. Firstly, we note that the dimerized product
bra state being equivalent to the corresponding dimerized ket product state of (9) in rotated
coordinates ought to be,

〈�| = {〈↓1↓2 | + 〈↑1↑2 |} ⊗ {〈↓3↓4 | + 〈↑3↑4 |} ⊗ · · ·
= {〈↓1↓2↓3↓4↓5↓6 · · · | + 〈↑1↑2↓3↓4↓5↓6 · · · | + 〈↓1↓2↑3↑4↓5↓6 · · · |

+ · · · + 〈↓1↓2↑3↑4↑5↑6↑7↑8 · · · | + · · · + 〈↑1↑2↑3↑4↑5↑6↑7↑8 · · · |}. (10)

We notice now that the modes of action of the spin operators (leftwards) on the bra spin
states for s = 1/2 are,

〈↓ |s+ = 0; 〈↓ |s− = 〈↑ |
〈↑ |s− = 0; 〈↑ |s+ = 〈↓ |. (11)

Thus, the NCCM ground bra state for LSUBm with m a finite number can only ever contain
a maximum of m “up” states in the bra state because of the linear nature of the bra-state
operator S̃ in (2). Hence, by contrast to the ket state, within the LSUBm approximation
we can never construct an equivalent simple dimerized product bra state using the NCCM
except in the exact limit where m → ∞. However, carrying out CCM calculations in the
limit m → ∞ using computational methods is generally not practical. We note that this
problem might be alleviated by using the extended coupled cluster method (ECCM). In this
method, the bra state is written in terms of an exponential with respect to both the ket-
state and bra-state correlation operators. It is this exponential term that allows such dimer
solutions, e.g., for the ket state for the NCCM above. However, we do not discuss the ECCM
further in this present paper.

We mention that the sublattice magnetization M (see (6)) for the simple dimerized prod-
uct ket state (i.e., S a

2 = 1 and all other coefficients equal to zero) is written in terms of only
one bra-state correlation coefficient, i.e. M = 1

2 − 2S̃ a
2 .
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3 Results

3.1 The Spin-Half J1–J2 Model on the Linear Chain

The Hamiltonian for this spin-half model has nearest-neighbor bonds of strength J1 and
next-nearest-neighbor bonds of strength J2. We use a Néel model state in which nearest-
neighbor spins on the linear chain are antiparallel. We rotate the spin coordinates of the
‘up’ spins so that notationally they become ‘down’ spins in these locally defined axes. The
relevant Hamiltonian in rotated coordinates is then given by

H = −J1

∑

〈i,j 〉

(
sz
i s

z
j + 1

2
{s−

i s−
j + s+

i s+
j }

)
+ J2

∑

〈〈i,k〉〉

(
sz
i s

z
k + 1

2
{s+

i s−
k + s−

i s+
k }

)
, (12)

where 〈i, j〉 runs over all nearest-neighbor sites on the lattice counting each pair once and
once only and 〈〈i, k〉〉 runs over all next-nearest-neighbor sites on the lattice, again counting
each pair once and once only. Henceforth we put J1 = 1 and consider J2 > 0.

The ground-state properties of this system have been studied using methods such as ex-
act diagonalizations [3, 10], DMRG [4–8, 63], CCM [60, 62, 86], and field-theoretical ap-
proaches [8] (see Refs. [8, 9] for a general review). Note that previous CCM studies of
the model considering only independent-spin product model states that conserve the lattice
symmetry are reported in Refs. [60, 87]. At J2/J1 = 0 we have the unfrustrated Heisenberg
antiferromagnet, where the exact solution is provided by the Bethe Ansatz. The ground state
is gapless and the spin-spin correlation function 〈si · sj 〉 decays slowly to zero according
to a power-law, i.e. no true Néel-like long-range order is observed. In the region J2/J1 > 0
the nearest-neighbor (J1) and next-nearest-neighbor interactions (J2) compete, thus leading
to frustration. At J2/J1 = 0.2411(1) the model exhibits a transition to a two-fold degener-
ate gapped dimerized phase with an exponential decay of the correlation function 〈si · sj 〉
[3–6, 8, 9]. This state breaks the translational lattice symmetry. At the Majumdar-Ghosh
point J2/J1 = 0.5 there are two degenerate simple exact dimer-singlet product ground states
corresponding to the dimerized product state of (9) for the Hamiltonian of (12) [1, 2]. (We
recall that rotated spin coordinates are used in (9).)

We now consider how this model can be treated in the dimerized phase by the CCM via,
as presented above, the identification of a special dimerized solution of the CCM equations
for a Néel model state. Also as discussed above, we use a doubled unit cell including two
neighboring sites for a spin-half system on the linear chain at points (0,0,0) and (1,0,0) and
a single Bravais vector (2,0,0)T to take into account the symmetry breaking. There are thus
two distinct types of two-spin nearest-neighbor ket-state correlation coefficients and again
these are denoted as S a

2 and S b
2 . The exact ground state at J2/J1 = 0.5 of (9) is obtained by

setting S a
2 = 1 and all other coefficients equal to zero. Starting from J2/J1 = 0.5 we are able

to track this exact solution at J2/J1 = 0.5 within a certain LSUBm approximation for other
values of J2/J1 and the results for the nearest-neighbor ket-state correlation coefficients in
LSUB12 approximation are presented in Fig. 1. Clearly, we see that the exact dimerized
product-state solution for the ket ground state is obtained within LSUB12 level of approxi-
mation (and, indeed, at all LSUBm approximation with m ≥ 2) at J2/J1 = 0.5, i.e. S a

2 = 1
and all other coefficients equal to zero. Moving away from J2/J1 = 0.5 we still find a CCM
ground state that breaks the lattice symmetry. However, this dimerized state deviates from
the simple product state, i.e. S a

2 �= 1 and other non-zero coefficients SI occur. Furthermore,
the solution (i.e. S a

2 = S b
2 ) having full translational symmetry is the only solution below a

critical point J2/J1|c1 (< 0.5). Henceforth, we shall refer to this solution below J2/J1|c1 as
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Fig. 1 CCM results at the LSUB12 level of approximation for the ground-state nearest-neighbor ket-state
correlation coefficients of the spin-half J1–J2 antiferromagnet on the linear chain. The nearest-neighbor
coefficients S a

2 and S b
2 of the symmetry breaking dimerized solution are shown by dashed lines. Results for

the usual (‘Néel-type’) solution (where S a
2 = S b

2 ) are shown by the full line. Below the (bifurcation) CCM

critical point at J2/J1|c1 there is only the solution with S a
2 = S b

2 . A termination point J2/J1|t of the CCM
equations for the dimerized solution, at which point the real solution to the CCM equations terminates, is
indicated by the boxes

Table 1 CCM results for the
positions of the range of the
dimerized phase

LSUBm J2/J1|c1 J2/J1|t

2 0.4761 –

4 0.4745 0.5576

6 0.4637 –

8 0.4568 0.7410

10 0.4498 0.6404

12 0.4429 0.5956

the “usual (‘Néel-type’) solution” because previous CCM calculations [60, 62] for the J1–J2

model have considered the non-symmetry breaking case only. For larger values of J2/J1 a
CCM termination point is observed at J2/J1|t (> 0.5), shown by the boxes in Fig. 1. At this
point, the real solution of the CCM dimerized solution is terminated. These CCM results
indicate that a dimerized phase exists over a finite range of J2/J1, which is in agreement
with known results, see e.g. Refs. [4–6, 8, 9]. Qualitatively similar results are observed at
other levels of LSUBm approximation for the ket-state correlation coefficients as a function
of J2/J1. The results for J2/J1|c1 and J2/J1|t are shown in Table 1. It is obvious that the
CCM critical point J2/J1|c1 becomes smaller (i.e., becomes closer to the true critical point
J2/J1 = 0.2411(1) [4–6, 9]) with higher orders m of LSUBm approximation. However, the
critical point J2/J1|c1 is still significantly too high even at the LSUB12 level of approxima-
tion. However, as shown in Ref. [8] the dimerization gap for J2/J1 < 0.4 is very small and it
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Fig. 2 CCM results at the LSUB12 level of approximation for the ground-state nearest-neighbor bra-state
correlation coefficients of the spin-half J1–J2 antiferromagnet on the linear chain. The nearest-neighbor co-
efficients S̃ a

2 and S̃ b
2 of the dimerized solution are shown by dashed lines. Results for the usual (‘Néel-type’)

solution (where S̃ a
2 = S̃ b

2 ) are shown by the full line. Below the critical point at J2/J1|c1 both solutions co-
incide. Results for these bra-state correlation coefficients diverge at the critical point J2/J1|c1 . A termination
point at J2/J1|t is shown by the boxes on the right-hand side of the figure

is therefore not very surprising that we do not detect the dimerized phase below J2/J1 < 0.4
using LSUBm approximations with m ≤ 12. On the side of J2/J1 > 0.5 the existence of ter-
mination points can be related to the appearance of incommensurate spiral spin correlations
at J2/J1 > 0.6 [8, 10, 63, 86] that are not taken into account in the model state used here.

The nearest-neighbor bra-state correlation coefficient at the LSUBm level of approxi-
mation at J2/J1 = 0.5 has S̃ a

2 = 1/4 with m ≥ 4. This is shown in Fig. 2 for the LSUB12
level of approximation. We find that the bra-state solution for the nearest-neighbor corre-
lation coefficients is close to 1/4 over the range J2/J1|c1 < J2/J1 ≤ J2/J1|t . However, we
find that the nearest-neighbor correlation coefficient diverges as J2/J1 → J2/J1|c1 and this
is also shown in Fig. 2. Again, the usual (‘Néel-type’) solution (S̃ a

2 = S̃ b
2 ) is obtained for

J2/J1 < J2/J1|c1 . The upper CCM termination point at J2/J1|t is also shown in Fig. 2 by
the boxes on the right-hand side of the figure. Once more, qualitatively similar results are
observed at other levels of LSUBm approximation for the bra-state correlation coefficients
as a function of J2/J1.

We now consider the ground-state energy of this system in the dimerized regime. Our
results for the new dimer solution and the usual (‘Néel-type’) solution are shown in Fig. 3.
Firstly, we note that the exact ground-state energy of Eg/N = −0.375J1 is obtained at the
point J2/J1 = 0.5, as expected. We note again that our solution is an exact ground eigen-
state at this point. We see that ground-state energy of the usual (‘Néel-type’) CCM solution
in which S a

2 = S b
2 at the LSUB12 level of approximation actually lies below this exact solu-

tion. This indicates (i) that the usual (‘Néel-type’) CCM solution is a relatively poor choice
at this point; and, (ii) that the CCM ground-state energy does not fulfill the variational prin-
ciple [70]. Furthermore, we see that CCM dimer solution compares extremely well to results
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Fig. 3 CCM results for the ground-state energy of the spin-half J1–J2 antiferromagnet with J1 = 1 on
the linear chain at the LSUB12 level of approximation. The dimerized and usual (‘Néel-type’) solutions are
shown in this figure. Results of exact diagonalizations for N = 28 and N = 32 number of sites are also shown.
The CCM termination point for the dimerized solution is shown by the box

of exact diagonalizations for N = 28 and N = 32 sites in the dimerized regime shown in
Fig. 3. It certainly provides far better results than those of the usual (‘Néel-type’) CCM
solution beyond the critical point at J2/J1|c1 .

The results for the sublattice magnetization M of this model are presented graphically
in Fig. 4. Since the one-dimensional J1–J2 model does not possess Néel long-range order
for any value of J1, J2 ≥ 0 the true value is M = 0. As is known from previous CCM calcu-
lations [60, 72, 86, 87], the sublattice magnetization is nonzero (but small) using the usual
Néel model state. However, the correct result M = 0 can be obtained [86, 87] by extrapolat-
ing the ‘raw’ LSUBm data to m → ∞. Indeed it is obvious that the CCM-LSUBm values for
M are non-negligible for Néel model state in the region J2/J1 < J2/J1|c1 . It is also obvious
that M decreases with the level of approximation m approaching the true value M = 0, and,
that increasing the strength J2 of the frustration weakens magnetic order. More interestingly,
we find that the sublattice magnetization behaves discontinuously at J2/J1|c1 by tracking the
lattice symmetry-breaking dimerized solution, and then remains near to zero at LSUB10 and
LSUB12 levels of approximation across the entire range J2/J1|c1 < J2/J1 < J2/J1|t . (At the
lower LSUB8 level of approximation the results for the sublattice magnetization differ from
zero by a small amount in a small region above J2/J1 > 0.5.) On the other hand, by tracking
the usual (‘Néel-type’) solution M changes continuously with J2 and it is larger than for the
dimerized solution for J2/J1|c1 < J2/J1 < 0.5. This behavior of M is another indication that
the dimerized CCM solution describes the true physics of the model much better than the
usual Néel solution. We note finally that the CCM sublattice magnetization is exactly zero
at the Majumdar-Ghosh point J2/J1 = 0.5 at all levels of LSUBm approximation using the
dimerized product state.

We remark again that our results for the lower phase transition point J2/J1|c1 overes-
timate the position by a factor of two. We re-iterate that we believe that we over-estimate
J2/J1|c1 because the energy gap only becomes large for values of J2/J1 of approximately
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Fig. 4 CCM results for the sublattice magnetization M of the spin-half J1–J2 antiferromagnet on the linear
chain. Below the critical point at J2/J1|c1 the results for the usual (‘Néel-type’) and the dimerized solution
coincide. At J2/J1|c1 the sublattice magnetization of the dimerized solution exhibits a jump, whereas M for
the usual (‘Néel-type’) solution is continuous. Above J2/J1|c1 the sublattice magnetization of the dimerized
solution (black lines) is smaller than that of the usual (‘Néel-type’) solution (grey lines), except for the LSUB8
in a small region above J2/J1 = 0.5

0.4 [8]. Finally, we note that results given here present the possibility that the CCM might
be applied to detect spontaneous symmetry breaking for systems of two or three spatial di-
mensions, i.e., where other approximate methods become less accurate or may not even be
applicable (e.g., such as the DMRG method).

3.2 The Shastry-Sutherland Antiferromagnet

Another model that demonstrates dimer order is the Shastry-Sutherland antiferromagnet
[11]. The Shastry-Sutherland antiferromagnet is a spin-half Heisenberg model on an un-
derlying square lattice with antiferromagnetic nearest-neighbor bonds J1 and with one
antiferromagnetic next-nearest-neighbor diagonal bond J2 in every second square (pla-
quette), as shown in Fig. 5. We note that for bonds of equal strength, i.e., J1 = J2, the
Shastry-Sutherland model is equivalent to a Heisenberg model on one of the eleven uni-
form Archimedean lattices [12]. Interest in this model has been renewed by the discovery of
the magnetic material SrCu(BO3)2 [12, 13] that can be understood in terms of the Shastry-
Sutherland model. The ground state of this model in the limit of small frustration J2/J1 � 1
and large frustration J2/J1 � 1 is well understood. However, the ground-state phase at in-
termediate values of J2/J1 ≈ 1 is still a matter of discussion.

Just as in the case of the one-dimensional J1–J2 model this model also has a simple exact
dimer-singlet product ground state in a certain parameter region. However, by contrast with
the one-dimensional J1–J2 model the dimer-singlet product ground state of the Shastry-
Sutherland model is built up of a product of dimer singlets located on the next-nearest J2

bonds and does not break the translational symmetry.
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Fig. 5 The nearest-neighbor
bonds (solid lines) of strength J1
and the next-nearest-neighbor
diagonal bonds (dashed lines) of
strength J2 for the
Shastry-Sutherland model. The
geometric unit cell is shown by
the square with the grey dotted
lines

This model has been treated previously by Schwinger boson mean-field theory [13],
exact diagonalization of small lattices [12, 14, 15], series expansions [16–19], the renor-
malization group [19], a gauge-theoretical approach [20], and the CCM [25, 86]. A re-
cent review can be found in Ref. [21]. We know from these studies that the physics of
the quantum model is similar to that of its classical counterpart for small J2 < J1, i.e., we
have semi-classical Néel long-range order. Furthermore, we know [11] that a simple dimer-
singlet product state given by dimer singlets on the diagonal bonds indicated by the dashed
lines in Fig. 5 is the quantum ground state for large J2. The energy per site of this dimer-
singlet product state is Edimer/N = −3J2/8. It becomes the ground state for J2 > Jc

2 where
J c

2 ≈ (1.465 ± 0.025)J1. Note that, by contrast to the one-dimensional J1–J2 model, the
transition to the dimerized phase in the Shastry-Sutherland model is most likely of first
order.

The application of the CCM to this model has been discussed at length in Ref. [25].
The interested reader is referred to this reference for more details about both the model
and the details of the applying the CCM to it. We note that the CCM solution for the
Néel model state with nearest-neighbor spin antiparallel was identified and this worked
well in the region of J2/J1 < 1.6. This case has a Hamiltonian similar to that of (8), the
nearest-neighbor bonds J1 (solid lines) and next-nearest-neighbor bonds J2 (dashed lines)
run over those sites on the square lattice, as opposed to the linear chain for the case presented
above.

However, we will show that a simple dimerized product ket state solution to the CCM
equations also exists. Note firstly that we may define a collinear independent-spin product
model state. This is a model state in which next-nearest-neighbor spins are antiparallel. This
state is relevant for large antiferromagnetic J2, since antiparallel next-nearest-neighbor spins
satisfy the J2 bonds. Thus, the “up” and “down” spins form alternate neighboring columns
(or rows), see e.g. Refs. [88–92]. We choose the former case and call the corresponding
model state the ‘columnar model state’. We rotate the “up” spins into (nominally) “down”
as illustrated in Sect. 2.1, although we must now also take the columnar form of the model
state into account. The relevant Hamiltonian in the appropriate local axes described above
is given by
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H = −J1
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, (13)

where the sum on 〈ix, jx〉 runs over all nearest-neighbor pairs of the lattice sites in the row or
x-direction and the sum on 〈iy, jy〉 runs over all nearest-neighbor pairs of the lattice sites in
the column or y-direction. Furthermore, the sum on 〈〈i, k〉〉 runs over distinct next-nearest-
neighbor pairs of sites connected by the broken lines in Fig. 5. We count each bond once and
once only (for both the nearest-neighbor and next-nearest-neighbor bonds). The unit cell for
this model contains four sites, and it is shown also in Fig. 5. Once again, in what follows we
set J1 = 1 and treat J2 > 0 as the parameter of interest in the model.

At J2 = 0, we have the usual square-lattice antiferromagnet, and the system is Néel-
ordered at this point and in a finite range for J2 > 0. Furthermore, we note that the
ground state becomes the simple dimer-singlet product state for J2 > Jc

2 where J c
2 ≈

(1.465 ± 0.025)J1. We are able to define CCM correlation coefficients for spin dimers lo-
cated on the diagonal bonds of the dashed lines of Fig. 5 with respect to the columnar model
state. By setting these ket-state correlation coefficients to unity and all other CCM multispin
correlation coefficients to zero, we are able to form the relevant dimer-singlet product state
that is the exact ground state in this regime. We find that this CCM dimer solution is a stable
solution for the CCM equations for all values of J2/J1 > 0, and this is because the dimer-
singlet product state is a true eigenstate for any values of J1 and J2. However, the energy
of this state is low enough for it to become the ground-state energy only for large J2. The
CCM dimer solution yields also the correct exact energy for the dimer-singlet product state,
namely, Eg/N = −0.375J2. The CCM ground-state energies are now shown for both the
dimer and usual Néel results in Fig. 6. We see that there is a crossing of the Néel and dimer
energies at J2/J1 ≈ 1.48, as reported in Ref. [79].

Another interesting point is that the bra-state correlation coefficients do not remain con-
stant with respect to varying J2. Indeed, we find many of the bra-state correlation coefficients
diverge at a CCM critical point as may be seen in Fig. 7 for the next-nearest-neighbor bra-
state correlation coefficients on the diagonals (i.e., those corresponding to the dashed lines in
Fig. 5). This is a critical point for the CCM bra-state equations only. The ket-state equations
clearly do not contain a similar critical point. Hence, this is a critical point that is “driven”
by the bra state alone. The critical points occur at values for J2/J1 of 1.059, 1.243, and
1.397 for the SUB2-4, LSUB4, and LSUB6 levels of approximation, respectively. This is in
agreement with the position of the phase transition point at J c

2 ≈ (1.465±0.025)J1. We note
that the CCM ket state is an exact ground eigenstate in this regime, whereas the bra state
is not. As mentioned before, this is because the ket states and bra states are not explicitly
constrained to be Hermitian conjugates of each other in the CCM parametrizations.

The results for the sublattice magnetization M (with respect to the columnar model state)
are shown in Fig. 8. We see that the values for the sublattice magnetization are negative for
all values of J2/J1. Note that the true values for the sublattice magnetization are actually
zero in this regime. Negative values of M might be an indication of missing magnetic long-
range order. However, we note that although the CCM results are negative, they remain close
to zero (e.g., |M| < 10−2 at the LSUB6 level of approximation) for J2/J1 > 2. This indicates
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Fig. 6 The CCM ground-state energy for the spin-half Shastry-Sutherland model (with J1 = 1) using the
Néel model state (LSUB4, LSUB6, LSUB8) and the columnar model state. Note that in the latter case the
exact ground-state energy is obtained for any LSUBm with m ≥ 2

Fig. 7 CCM results using the columnar model state for the ground-state bra-state correlation coefficients for
those sites connecting the dimers in the spin-half Shastry-Sutherland model

that we obtain generally good results for the sublattice magnetization. However, we see from
Fig. 8 that our results clearly become worse for J2/J1 < 2. For example, we note that the
sublattice magnetization diverges as we approach the CCM critical point (of the bra-state
equations only) at J c

2 /J1. We note that the bra and ket states are not explicitly constrained
to be Hermitian conjugates. Hence, the bra state does not have to be an exact eigenstate
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Fig. 8 The sublattice magnetization for the spin-half Shastry-Sutherland model for the columnar model state

of the Hamiltonian even though the ket state is for the Shastry-Sutherland model. We note
therefore that this is enough to allow the bra-state equations to become critical even though
the ket-state equations do not; hence, the nearest-neighbour bra-state correlation coefficient
(S̃ a

2 ) diverges. The sublattice magnetization (M = 1
2 − 2S̃ a

2 ) therefore diverges also. Again,
this is a reflection of the critical point that is “driven” by the bra state alone. The Néel state
with nearest-neighbor spins antiparallel is the appropriate CCM model state [25] below the
critical point J2 < Jc

2 .

3.3 The J –J ′ Heisenberg Antiferromagnet on the CAVO Lattice

In this section, we consider an antiferromagnetic Heisenberg model in which the basic geo-
metric unit cell contains four neighboring lattice sites on the underlying crystallographic
lattice of the magnetic material CaV4O9 (CAVO), shown in Fig. 9. There are two non-
equivalent antiferromagnetic nearest-neighbor bonds J and J ′ belonging to dimers (J ′) and
to four-spin plaquettes (J ) respectively. The ground state of the quantum model depends on
the ratio J ′/J of the competing bonds. Using a unit cell as defined in Fig. 9, the plaquette
bonds J are inside the four-site unit cell and the dimer bonds J ′ connect sites in different unit
cells. We note that this model is not frustrated but the two non-equivalent nearest-neighbor
bonds lead to a competition in the quantum system. Henceforth, we choose an energy scale
such that J = 1.

We note that several techniques [28–34] suggest that the Néel-ordered ground state at
J ′/J = 1 persists over a finite range of values of J ′/J around this point, J ′

c1
/J < J ′/J <

J ′
c2

/J . The best estimates for J ′
c1

/J and J ′
c2

/J are probably provided by quantum Monte
Carlo calculations [29, 30] that suggest that the range over which Néel order is stable is
given by J ′

c1
/J ≈ 0.939 and J ′

c2
/J ≈ 1.68 ± 0.14. For J ′/J < J ′

c1
/J the model exhibits

a quadrumerized plaquette VBC phase with enhanced spin correlations on the four-spin
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Fig. 9 The CAVO lattice. The
nearest-neighbor bonds that
connect two sites on a four-site
plaquette are shown by the solid
lines and have a bond strength
given by J (= 1). The
nearest-neighbor bonds that
connect two sites on different
plaquettes (dimer bonds) are
shown by the dotted lines and
have a bond strength given by J ′ .
The unit cell of the lattice is
shown by the square with the
grey dashed lines

plaquettes, and for J ′/J > J ′
c2

/J it has a dimerized VBC phase with enhanced spin cor-
relations on the dimers. Neither of the VBC phases breaks the translational symmetry of
the lattice. Furthermore, we mention that by contrast with the previously considered models
(see Sects. 3.1 and 3.2) this model has no simple exact product ground state for any value of
J ′/J . The interested reader can find more information on the ground-state phases in Refs.
[28–34].

The four-site plaquettes in the unit cell become decoupled only in the limit J ′/J = 0.
The ground state is a product of such four-site plaquette singlets in this limit. To model such
a state using the CCM we start again from the Néel model state; namely, a state in which the
spins on nearest-neighbor sites are antiparallel.

To create an exact plaquette-singlet product VBC ground state at J ′/J = 0 using the
CCM we have to adjust the nearest-neighbor correlation coefficients S a

2 and S b
2 and a single

four-body plaquette correlation coefficient S p

4 containing all four sites properly. (Note that
S a

2 represents those ket-state coefficients for the nearest-neighbor two-body cluster connect-
ing sites on a plaquette indicated by the solid lines in Fig. 9, whereas S b

2 represents those
ket-state coefficients for the nearest-neighbor two-body cluster connecting sites on a dimer
indicated by the dotted lines in the same figure. The coefficient S p

4 represents those ket-state
coefficients for the four-body cluster corresponding to a plaquette indicated by the solid
lines in Fig. 9.) Indeed, it is easy to show that setting the ket-state correlation coefficients S a

2
and S p

4 to a value of 0.5 and all other ket-state correlation coefficients (including S b
2 ) to zero

the plaquette-singlet product VBC state is obtained exactly, see Fig. 10. We are able to track
this plaquette solution as J ′/J is increased away from the point J ′/J = 0 where it is exact.
Furthermore, we are also able to reproduce exactly the dimer-singlet product ground state in
the limit J ′/J → ∞. In this limit, the nearest-neighbor ket-state correlation coefficient S b

2
on the dimer bonds (dotted lines in Fig. 9) has a value of one and all other coefficients (e.g.,
S a

2 and S p

4 ) are zero, see Fig. 10. This solution is produced automatically when we track the
solution (outlined above) from J ′/J = 0, and so our CCM Ansatz produces accurate results
in all phases of this model. The corresponding bra-state correlation coefficients S̃ a

2 , S̃ b
2 and

S̃ p

4 behave smoothly in the entire range of J ′/J , see Fig. 11.
Results for the ground-state energy are shown in Fig. 12. We see that the exact ground-

state energy at J ′/J = 0 is reproduced for LSUBm levels of approximation with m ≥ 4, as
expected. At J ′/J = 1, we reproduce a previous result [82] using the Néel model state for
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Fig. 10 CCM results at the LSUB8 level of approximation for the ground-state nearest-neighbor two-spin A

and B ket-state coefficients (S a
2 and S b

2 ) and the plaquette four-spin ket-state correlation (S p
4 ) coefficients of

the spin-half antiferromagnet on the CAVO lattice

Fig. 11 CCM results at the LSUB8 level of approximation for the ground-state nearest-neighbor two-spin
A and B bra-state coefficients (S̃ a

2 and S̃ b
2 ) and the plaquette four-spin bra-state (S̃ p

4 ) bra-state correlation
coefficients of the spin-half antiferromagnet on the CAVO lattice

this CAVO lattice. At all values of J ′/J , the LSUBm results are seen to converge rapidly
with increasing levels of LSUBm approximation. We note that the system should again
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Fig. 12 CCM results for the ground-state energy of the J –J ′ Heisenberg antiferromagnet on the CAVO
lattice (with J = 1)

decouple into dimers as J ′/J → ∞ and the correct ground-state energy (−0.375J ′) is re-
produced in this limit. The CCM provides excellent results for the ground-state energy for
all values of J ′/J .

The results for the sublattice magnetization are shown in Fig. 13. We extrapolate the
raw LSUBm data to the limit m → ∞ in order to determine the quantum phase transition
points where the magnetic Néel long-range order vanishes. An appropriate extrapolation
rule for the magnetic order parameter for systems showing a ground-state order-disorder
transition is [87–92] M(n) = b0 + b1(1/n)1/2 + b2(1/n)3/2, where we use LSUBm results
with m = {4,6,8,10}. The results for these quantum critical points are shown in Table 2.
Again, we note that these results indicate that the Néel order persists over a finite range
around J ′/J = 1 for the of the J –J ′ Heisenberg antiferromagnet on the CAVO lattice.
Finally, these results show that the CCM can handle plaquette VBC ordering as easily as
dimer VBC ordering or the usual Néel ordering. Furthermore, we have demonstrated that
quantum critical points can be determined by using the CCM to high orders of LSUBm

approximation.

4 Conclusions

We have shown in this article that we can easily form dimer and plaquette VBC ground
states using the CCM with independent-spin product model states. We have investigated a
number of cases in which the ground state was a product of localized dimer or plaquette
singlets. Firstly, we considered the spin-half J1–J2 model for the linear chain. We showed
that we are able to reproduce exactly the dimerized ground state at J2/J1 = 0.5. Interest-
ingly, a symmetry-breaking dimerized CCM solution is observed for J2/J1 < 0.5, which
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Fig. 13 CCM results for the ground-state sublattice magnetization M of the J –J ′ Heisenberg antiferromag-
net on the CAVO lattice

Table 2 Results for the quantum
critical points of the J –J ′
Heisenberg antiferromagnet on
the CAVO lattice

Method J ′
c1

/J J ′
c2

/J

CCM Extrapolation (m = {4,6,8,10}) 0.82 1.82

QMC [29, 30] 0.939 1.68±0.14

Cumulant Series Expansions [32] 0.9 1.7

Non-Linear Spin-Wave Theory [34] 0.90 1.6

Schwinger-Boson Mean-Field Theory [33] 0.6 2.4

only becomes equal to the usual (‘Néel-type’) solution that conserves the lattice symmetry
at a CCM critical point J2/J1|c1 . Results for the bra state correlation coefficients diverged
at this point also. We took this to indicate the onset of the dimerized ground-state phase that
breaks the translational lattice symmetry. We found that the dimerized phase extends over a
finite range of values of J2/J1 both above and below 0.5. Results for the ground-state energy
for the dimerized CCM solution were found to agree extremely well with the results of exact
diagonalizations for N = 28 and N = 32 chains in the dimerized regime. The change from
the usual (‘Néel-type’) solution to the dimerized solution was also observed in the behavior
of the sublattice magnetization.

We then considered the Shastry-Sutherland model and we demonstrated that the CCM
can span the correct ground states in both the Néel and the dimerized phases. We found a
CCM critical point for the dimerized solution that is “driven” by the CCM bra state alone.
Furthermore, the position of this critical point is in good agreement with the known value for
the phase transition point of this model. Results for the sublattice magnetization (that ought
to be zero in the dimerized phase) were found to be generally good in the dimerized regime.
For example, results for the sublattice magnetization at the LSUB6 level of approximation
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were found to be |M| < 10−2 for J2/J1 > 2. However, the sublattice magnetization was also
found to be negative and to diverge at the critical point of the bra-state equations.

Finally, we considered a spin-half Heisenberg antiferromagnet with nearest-neighbor
bonds with respect to an underlying lattice that corresponds to that of the magnetic ma-
terial CaV4O9. The four nearest-neighbor bonds that connect sites on a four-site plaquette
have a bond strength given by J and the nearest-neighbor bonds that connect sites belonging
to different plaquettes (dimer bonds) have a bond strength given by J ′. The exact plaquette-
singlet ground state at J ′/J = 0 and the exact dimer-singlet ground state as J ′/J → ∞
were both reproduced exactly using the CCM with the same choice of Néel model state.
We found that the CCM can provide precise results for the ground-state energy over all
intervening values of the parameter J ′/J . Results for the sublattice magnetization were pre-
sented, and these results indicated that the Néel-ordered regime persists over a finite range
of values of J ′/J around the point J ′/J = 1. For large (and small) values of J ′/J , the
Néel long-range order is destroyed by local singlet formation on dimers (and on plaquettes).
Extrapolations of LSUBm data suggest that the Néel-order regime extends over the range
0.82 < J ′/J < 1.82. These results were found to be in fairly reasonable agreement with
quantum Monte Carlo results for this model [29, 30]. However, a discussion of the accuracy
of phase transition points estimated using the CCM is beyond the scope of this article and
so will form the contents of another article, although we note here that we believe also that
higher orders of LSUBm approximation would provide closer agreement.

As noted above, the CCM is one of the most powerful and most widely applied tech-
niques of quantum many-body theory. One of the reasons for this success is based on the
fact that the CCM allows the inclusion of multi-particle correlations into the ground- and
excited-state wave functions in a controlled and systematic manner. The range of applica-
bility of the CCM to lattice quantum spin systems has been greatly extended previously by
the creation of efficient and powerful high-order computer codes for independent-spin prod-
uct (e.g. Néel) model states. These codes are simple to use and they are generally accurate
in practical applications. Furthermore, they are extremely flexible in terms of defining and
solving new spin problems.

Previously however, non-classical orderings (such as local singlet formation) have also
been considered using the CCM by employing non-Néel model states. This typically in-
volved the direct use of products of, e.g., local dimer singlets, in the model state. However,
this approach required a whole new matrix-operator formalism to be created for each new
problem [62]. This is usually tedious and time-consuming, although it is normally straight-
forward mathematically. More importantly, however, the existing high-order CCM codes
would then need to be amended extensively also in order to implement the new matrix al-
gebra for each new problem. Here we have presented a much simpler and more universal
approach that combines exact solutions for dimer or plaquette VBC product ground states
with the computational implementation described in Refs. [64, 68, 72, 77, 80, 81] based on
independent-spin product model states.

One seeming shortcoming of this new approach was found to be that the ket state can be
an exact representation of the true ground state, whereas the bra state might not be at the
same level of LSUBm approximation. This is due to the simple fact that the NCCM parame-
trizations of the ket and bra wave functions are not manifestly Hermitian conjugates of each
other. This meant, for example, that the exact ground-state energy of the Shastry-Sutherland
model in the dimerized phase was reproduced, since it is calculated from the ket-state cor-
relation coefficients alone, whereas the exact sublattice magnetization (known to be zero in
this regime) was not, since its calculation requires the use of the bra-state correlation coeffi-
cients as well as the ket-state coefficients. We speculate that this problem might be overcome
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by employing the extended coupled cluster method (ECCM) that contains an exponentiated
form of the bra-state correlation operator in the (ground) bra state. We believe that it is pos-
sible to construct a similar exact bra-state solution for the ECCM as we have constructed
here for the ket state using the NCCM based on independent-spin product model states.

As noted above, an alternative approach is to utilize model states that are formed directly
from products of local dimer or plaquette states (even for the NCCM). In this case, the ket
and bra state can become Hermitian conjugates (trivially) when the model state is the exact
ground state. Indeed, in this case, all of the CCM ket- and bra-state correlation coefficients
become zero. However, even here, we note that the lack of manifest Hermiticity is a general
feature of the CCM, i.e., one that can exist even for results generated by calculations based
on such valence-bond model states. Indeed, in those cases for which the model state is not
(trivially) the ground state, the bra and ket states are again not constrained manifestly to be
Hermitian conjugates at any given level of LSUBm approximation.

In conclusion, this new approach for dimer- and plaquette-ordered ground states is flex-
ible, simple to implement, and very powerful. Lattices of arbitrary complexity can also be
treated using this new method. Furthermore, this approach is simple because we are us-
ing generally independent-spin product model states derived from classical ground states.
Indeed, this is far simpler than the alternative of creating a whole new matrix formalism
for each new model state formed from products of localized states. Finally, this approach
is powerful because the high-order codes based on independent-spin product model states,
which have been employed previously with great success, may be used directly in order to
simulate the properties of these non-Néel states. The useful LSUBm and SUBn approxima-
tion schemes devised for the Néel model states may be used directly also. The results of the
LSUBm scheme may be extrapolated easily to the limit m → ∞ using existing ‘heuristic’
extrapolation schemes. The results presented here offer a great enhancement to the range of
applicability of the CCM for lattice quantum spin systems that demonstrate ‘novel states’ of
quantum order.
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