3,204 research outputs found

    Excitonic effects in the optical conductivity of gated graphene

    Full text link
    We study the effect of electron-electron interactions in the optical conductivity of graphene under applied bias and derive a generalization of Elliot's formula, commonly used for semiconductors, for the optical intensity. We show that {\it excitonic resonances} are responsible for several features of the experimentally measured mid-infrared response of graphene such as the increase of the conductivity beyond the "universal" value above the Fermi blocked regime, the broadening of the absorption at the threshold, and the decrease of the optical conductivity at higher frequencies. Our results are also in agreement with {\it ab initio} calculations in the neutral regime.Comment: New version with discussion improve

    Optical Properties of Strained Graphene

    Full text link
    The optical conductivity of graphene strained uniaxially is studied within the Kubo-Greenwood formalism. Focusing on inter-band absorption, we analyze and quantify the breakdown of universal transparency in the visible region of the spectrum, and analytically characterize the transparency as a function of strain and polarization. Measuring transmittance as a function of incident polarization directly reflects the magnitude and direction of strain. Moreover, direction-dependent selection rules permit identification of the lattice orientation by monitoring the van-Hove transitions. These photoelastic effects in graphene can be explored towards atomically thin, broadband optical elements

    Distortion of the perfect lattice structure in bilayer graphene

    Full text link
    We consider the instability of bilayer graphene with respect to a distorted configuration in the same spirit as the model introduced by Su, Schrieffer and Heeger. By computing the total energy of a distorted bilayer, we conclude that the ground state of the system favors a finite distortion. We explore how the equilibrium configuration changes with carrier density and an applied potential difference between the two layers

    Rejuvenescimento do cajueiro por meio de podas e substituição de copas.

    Get PDF
    Este trabalho teve como objetivo informar aos produtores de caju sobre as tecnologias para melhoria da cajucultura, tais como, rejuvenescimento de cajueiros antigos, substituição de copas por meio da eliminação seletiva de plantas...bitstream/item/80682/1/circular-44.PD

    Síntese de nanopartículas de prata para aplicação na sanitização de embalagens.

    Get PDF
    bitstream/CNPDIA-2009-09/11896/1/CT99_2008.pd

    Edge phonons in black phosphorus

    Get PDF
    Exfoliated black phosphorus has recently emerged as a new two-dimensional crystal that, due to its peculiar and anisotropic crystalline and electronic band structures, may have potentially important applications in electronics, optoelectronics and photonics. Despite the fact that the edges of layered crystals host a range of singular properties whose characterization and exploitation are of utmost importance for device development, the edges of black phosphorus remain poorly characterized. In this work, the atomic structure and the behavior of phonons near different black phosphorus edges are experimentally and theoretically studied using Raman spectroscopy and density functional theory calculations. Polarized Raman results show the appearance of new modes at the edges of the sample, and their spectra depend on the atomic structure of the edges (zigzag or armchair). Theoretical simulations confirm that the new modes are due to edge phonon states that are forbidden in the bulk, and originated from the lattice termination rearrangements.Comment: 15 pages, 4 figure
    corecore