25 research outputs found

    Generating density grids of services and utilities in Europe based on Point of Interest (POI) data

    Get PDF
    In this short technical note we describe the production of a set of density maps of facilities and utilities across Europe. This dataset consists of 24 raster grids layers of 500x500 metres with each 500 m2 cell representing the number of Points of Interest (POI) per category, for the 2016 reference year, hereinafter referred as ‘POI density grids’. The work has been carried out in the frame of the Knowledge Centre for Territorial Policies. This dataset was produced in April 2018 in the scope of the collaboration between DG JRC and International Transport Forum (ITF) at the Organisation for Economic Co-operation and Development (OECD). It acts as a think tank for global transport policy issues and organises an annual summit of transport ministers. This work outputs will support the analysis of the spatial structure of regions and cities in terms of the supply of key urban services and amenities and will feed into the LUISA Territorial Modelling Platform. In the next section are described the used datasets and the methods deriving the final density grids. Chapter 3 analysis the output results both thematically and spatially, focusing on Paris as example. The conclusions are presented on the final chapter just before the annexes where detailed statistics can be found.JRC.B.3-Territorial Developmen

    Impact of shale gas development on water resources: A case study in Northern Poland

    Get PDF
    Shale gas is currently being explored in Europe as an alternative energy source to conventional oil and gas. There is, however, increasing concern about the potential environmental impacts of shale gas extraction by hydraulic fracturing (fracking). In this study we focussed on the potential impacts on regional water resources within the Baltic Basin in Poland, both in terms of quantity and quality. The future development of the shale play was modelled for the timeperiod 2015-2030 using the LUISA modelling framework. We formulated 2 scenarios which took into account the large range in technology and resource requirements, as well as 2 additional scenarios based on the current legislation and the potential restrictions which could be put in place. According to these scenarios, between 0.03 and 0.86% of the total water withdrawals for all sectors could be attributed to shale gas exploitation within the study area. A screening-level assessment of the potential impact of the chemicals commonly used in fracking was carried out and showed that due to their wide range of physicochemical properties, these chemicals may pose additional pressure on freshwater ecosystems. The legislation put in place also influenced the resulting environmental impacts of shale gas extraction. Especially important are the protection of vulnerable ground and surface water resources and the promotion of more water-efficient technologies.JRC.H.8-Sustainability Assessmen

    A geographical database of Infrastructures in Europe - A contribution to the knowledge base of the LUISA modelling platform

    Get PDF
    Infrastructures are the facilities and systems that provide essential services for the functioning of an organization, city, region, country and therefore society as a whole. Often the term refers to physical facilities which society uses to work effectively such as transport, energy, water, communication networks, but also industrial production facilities, and social facilities such as schools, hospitals and residential areas, or even defence and safety facilities. Some infrastructures are considered ‘critical’ because their destruction or disruption by natural or man-made disasters could compromise significantly the functioning of economy and society and their security. Detailed inventories of infrastructures in Europe are essential for various purposes and applications. These inventories should be as complete as possible, covering ideally all infrastructure typologies and describe both their characteristics and precise location. Geographical Information Systems (GIS) are the most adequate tools to construct and manage geographical databases of infrastructures. Such geo-databases are indispensable to assess risk to infrastructures and draft plans for their protection. In addition, these databases could be used for urban and regional planning and for modelling of land use, transport, energy and economy. The ultimate objective of this work was to produce a geographical database of infrastructures in Europe that is ready to use thus enabling analyses for various purposes and applications at the JRC. Moreover, this work is a contribution to the knowledge base of the Land Use-based Integrated Sustainability Assessment (LUISA) modelling platform, which is used to assess territorial impacts of EU policies and investments. The database was aimed to cover as many sectors as possible, a wide geographical extent (EU28 + EFTA) at high spatial resolution. The work did not aim at producing new data but rather seeking, assembling and preparing data from existing, disparate data sources. In a first stage, the availability of infrastructure geographical layers within and outside JRC was checked. Data from various open and proprietary sources were collected to build a geo-database storing both the location and key attributes of each infrastructure in vector and raster formats. The assets addressed include transport infrastructures (e.g. roads, railways, ports, and inland waterways), energy (production and transport), industry (heavy industries and water and waste treatment), social (public health and education facilities) and world heritage sites, totalling 37 types or subtypes of infrastructures. A set of factsheets was constructed to describe and map the geographical distribution of infrastructures in Europe (chapter 3 of this report). The geo-database will be maintained and updated whenever appropriate by the JRC and it can be accessed upon request.JRC.H.8-Sustainability Assessmen

    Direct and Indirect Land Use Impacts of the EU Cohesion Policy. Assessment with the Land Use Modelling Platform

    Get PDF
    The Cohesion policy for the programming period 2014-2020 is analyzed in terms of its likely land use and environmental impacts using the Land Use Modelling Platform (LUMP). This report describes in detail the process and the methodology by which the ex-ante impact assessment was made, and presents the results for Austria, Czech Republic, Germany, and Poland. The modelling approach can provide insights on the trade-offs between economic growth, investment policies (such as the Cohesion policy), and land use and the environment. In addition, ways to mitigate potentially negative land use and environmental impacts were explored. The future development of the LUMP is discussed in view of planned future work.JRC.H.8-Sustainability Assessmen

    Spatially-resolved Assessment of Land and Water Use Scenarios for Shale Gas Development: Poland and Germany

    Get PDF
    The analysis presented in this report focuses specifically on two issues of potential concern with respect to shale gas development in EU member states using hydraulic fracturing technologies: pressure on freshwater resources, and land use competition. Potential alternative technologies, such as “dry fracking”, are not considered, because they are still at the research and development stage. We reviewed available literature in order to identify important variables that may influence the land and water requirements associated with shale gas development. We further derived a range of representative values spanning worst-, average- and best-case scenarios for each variable. We then coupled specific technology scenarios (incorporating these variables) regarding water and land use requirements for shale gas development from 2013-2028 with spatially-resolved water and land availability/demand modeling tools (i.e. using the European Land Use Modelling Platform (LUMP)). Scenario analyses (intended to represent worst-, average- and best-case assumptions) were subsequently implemented that incorporate a subset of the identified variables for shale gas development in the Lower Paleozoic Baltic-Podlasie-Lublin basin in Poland and for Germany as a whole from 2013-2028. In addition, we undertook a screening-level risk assessment of potential human and ecosystem health impacts attributable to accidental or operational release of chemicals used in hydraulic fracturing of shale formations, as well as the average gaseous emissions (per active well) associated with shale gas development activities that might be anticipated within a shale play. Finally, we developed a qualitative discussion of necessary considerations to support future air quality impact assessments for shale gas development activities.JRC.H.8-Sustainability Assessmen

    Territorial Facts and Trends in the EU Rural Areas within 2015-2030

    Get PDF
    The current analysis aims to highlight selected key territorial facts and trends in the EU rural areas at pan-European, national (NUTS 0) and regional (NUTS 3) level within 2015-2030. These trends are related to the status and potential evolution of rural population, agricultural land and agricultural land abandonment, as well as to their macro-economic aggregation into agriculture-driven clusters. A snapshot of employment and gross value added in agriculture by 2015 is provided, too. The analysis is performed by applying the LUISA Territorial Modelling Platform of the European Commissions' Joint Research Centre and in particular - its latest Territorial Reference Scenario 2017.JRC.B.3-Territorial Developmen

    European cities: territorial analysis of characteristics and trends - An application of the LUISA Modelling Platform (EU Reference Scenario 2013 - Updated Configuration 2014)

    Get PDF
    Cities and towns are at the core of the European economy but they are often also the places where problems related to the quality of life of citizens such as unemployment, segregation and poverty are most evident. To curtail the negative impacts and foster the positive effects of ongoing urban processes in Europe, policies have to be adjusted and harmonised to accommodate future urbanization trends. Such an analysis of the evolution of European cities requires the evaluation of impacts of continent-wide drivers and, at the same time, assessment of the effect of national and local strategies. As a contribution to this analysis of the current and future evolution of European territories (countries, macro-regions, regions or urban areas), the Directorate-General Joint Research Centre (DG JRC) of the European Commission (EC) has developed the Land-Use-based Integrated Sustainability Assessment (LUISA) Modelling Platform. Based on the concept of ‘dynamic land functions’, LUISA has adopted a novel approach towards activity-based modelling and endogenous dynamic allocation of population, services and activities. This report illustrates how European cities could potentially evolve over the time period 2010-2050, according to the reference configuration of the LUISA modelling platform, on the basis of a collection of spatial indicators covering several thematic fields. These spatial indicators aim to improve our understanding of urbanization and urban development processes in Europe; explore territorial dimensions of projected demographic and economic changes, and finally examine some key challenges that urban areas are or may be exposed to. Some of the key findings of this report are given below: - The proportion of the population living in cities, towns and suburbs is higher in the EU than in the rest of the world. According to the LUISA forecasts, the urban proportion will continue to increase up to 2030; subsequently slow down, and reach a relatively steady state by 2050. - In 2010, 65% of the EU population were living in Functional Urban Areas (FUA, the city and its commuting zone). This figure is expected to reach 70% by 2050. The total EU-28 population is expected to grow by 4.6%. Most of this population growth will occur particularly in FUA which will grow by an average 14%. - As of 2010, the amount of artificial areas per inhabitant in the EU-28 was estimated as 498 m2: it becomes 539 m2 in 2050 with an 8% increase. Although there is not a unique spatial pattern, land take tends to start peak at 5 km distance from the city centre. This is due to the fact that land is often less available for development within city centres and that the majority of land take therefore will occur firstly in the suburbs and then in rural areas. - By 2050, potential accessibility – as measure of economic opportunities - will be higher in the urban areas of north-western Europe, while it will not improve in lagging European regions. Urban form has a considerable impact on average travelled distances and thus potentially on the energy dependence of transport. - Green infrastructure is mainly located at the periphery of urban areas. Its share per person is generally low or very low in most of the European cities, with few exceptions. Green infrastructure per capita in FUA shows a general trend towards a decrease across the EU-28 (by approximately 13%) between 2010 and 2050. - Larger cities tend to have higher average flood risk, especially due to the higher sensitivity in terms of potential human and physical losses. The analysis herein presented is part of a wider initiative of DG JRC and DG REGIO aiming to improve the management of knowledge and sharing of information related to territorial policies, such as those concerning urban development. In this framework, the work will be further developed, covering the following main elements: - Development of the European Urban Data Platform, providing a single access point for data and indicators on the status and trends of European urban areas; - Updates of the LUISA configuration, to account for new socio-economic projections; - Support to the development of the EU Urban Agenda and related initiatives; - Provision of evidence-based support for the evaluation of territorial policies in particular to proof the role of cities in the implementation of EU priorities.JRC.H.8-Sustainability Assessmen

    European Territorial Trends - Facts and Prospects for Cities and Regions Ed. 2017

    Get PDF
    This report analyses a set of territorial trends at continental and sub-national scale, looking at patterns and determinants of regional growth, while considering pan-European and national characteristics. Past and prospective demographic and economic trends are analysed to provide a picture of ‘what, where, when and how’ things happen in European cities and regions. Specific emphasis is placed on urban areas since acknowledged sources of both opportunities and challenges. The indicators used in the analysis herein presented are freely and openly accessible in the Territorial Dashboard of the Knowledge Centre for Territorial Policies at: http://urban.jrc.ec.europa.eu/t-board/index.htmlJRC.B.3-Territorial Developmen

    LUISA Dynamic Land Functions: Catalogue of Indicators – Release I: EU Reference Scenario 2013 LUISA Platform - Updated Configuration 2014

    Get PDF
    The concept of ‘dynamic land function’ is a new notion for cross-sector integration and for the representation of complex system dynamics. A land function can be societal (e.g. provision of housing, leisure and recreation), economic (e.g. provision of production factors - employment, investments, energy – or provision of manufacturing products and services – food, fuels, consumer goods, etc.) or environmental (e.g. supply of ecosystem services). Land functions are temporally and spatially dynamic, and are constrained and driven by natural, socio-economic, and techno-economic processes. Based on the concept of ‘land function’ and beyond a traditional land use model, the Land-Use based Integrated Sustainability Assessment (LUISA) modelling platform adopts a new approach towards activity-based modelling based upon the endogenous dynamic allocation of population, services and activities. The ultimate product of LUISA is a set of territorial indicators that can be grouped and combined according to the ‘land function’ of interest and/or to the sector under assessment. The herein presented indicators measure the provision of land functions in the period 2010-2050, according to the EU Reference Scenario (LUISA, updated configuration 2014), consistent with settings (economic and demographic in particular) and policies in place in 2013 (hence including the 2020 renewable energy targets). The indicators are aggregated by Member States and Regions (Administrative Units NUTS-2) and can be employed as benchmark to monitor sectorial and territorial evolutions of alternative scenarios (e.g. to simulate policy options or specific measures), and for future updates of the reference scenario, to capture policy impacts (for example when changing energy targets) and their territorial effects. This catalogue aims to provide the description of the land functions and the list of related indicators and an indicator factsheet (metadata). 30 indicators, out of the more than 50 currently produced by LUISA, are included in the first release of the catalogue. The catalogue is periodically up-dated, following the updates of the configurations of the LUISA modelling platform and the definition, computation and validation of new indicators. Indicators and basic spatial layers used for the simulations will be made available in the frame of the framework for the management of knowledge and dissemination of information being set up by the Pilot Knowledge Centre on Territorial Policies.JRC.H.8-Sustainability Assessmen

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    corecore