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Abstract  

Cities and towns are at the core of the European economy but they are often also the 

places where problems related to the quality of life of citizens such as unemployment, 

segregation and poverty are most evident. 

To curtail the negative impacts and foster the positive effects of ongoing urban processes 

in Europe, policies have to be adjusted and harmonised to accommodate future 

urbanization trends. Such an analysis of the evolution of European cities requires the 

evaluation of impacts of continent-wide drivers and, at the same time, assessment of the 

effect of national and local strategies. 

As a contribution to this analysis of the current and future evolution of European territories 

(countries, macro-regions, regions or urban areas), the Directorate-General Joint 

Research Centre (DG JRC) of the European Commission (EC) has developed the Land-Use-

based Integrated Sustainability Assessment (LUISA) Modelling Platform. Based on the 

concept of ‘dynamic land functions’, LUISA has adopted a novel approach towards activity-

based modelling and endogenous dynamic allocation of population, services and activities. 

This report illustrates how European cities could potentially evolve over the time period 

2010-2050, according to the reference configuration of the LUISA modelling platform, on 

the basis of a collection of spatial indicators covering several thematic fields. These spatial 

indicators aim to improve our understanding of urbanization and urban development 

processes in Europe; explore territorial dimensions of projected demographic and 

economic changes, and finally examine some key challenges that urban areas are or may 

be exposed to. Some of the key findings of this report are given below: 

 The proportion of the population living in cities, towns and suburbs is higher in the 

EU than in the rest of the world. According to the LUISA forecasts, the urban 

proportion will continue to increase up to 2030; subsequently slow down, and reach 

a relatively steady state by 2050. 

 In 2010, 65% of the EU population were living in Functional Urban Areas (FUA, the 

city and its commuting zone). This figure is expected to reach 70% by 2050. The 

total EU-28 population is expected to grow by 4.6%. Most of this population growth 

will occur particularly in FUA which will grow by an average 14%. 

 As of 2010, the amount of artificial areas per inhabitant in the EU-28 was estimated 

as 498 m2: it becomes 539 m2 in 2050 with an 8% increase. Although there is not 

a unique spatial pattern, land take tends to start peak at 5 km distance from the 

city centre. This is due to the fact that land is often less available for development 

within city centres and that the majority of land take therefore will occur firstly in 

the suburbs and then in rural areas. 

 By 2050, potential accessibility – as measure of economic opportunities - will be 

higher in the urban areas of north-western Europe, while it will not improve in 

lagging European regions. Urban form has a considerable impact on average 

travelled distances and thus potentially on the energy dependence of transport. 

 Green infrastructure is mainly located at the periphery of urban areas. Its share 

per person is generally low or very low in most of the European cities, with few 

exceptions. Green infrastructure per capita in FUA shows a general trend towards 

a decrease across the EU-28 (by approximately 13%) between 2010 and 2050. 

 Larger cities tend to have higher average flood risk, especially due to the higher 

sensitivity in terms of potential human and physical losses. 

The analysis herein presented is part of a wider initiative of DG JRC and DG REGIO aiming 

to improve the management of knowledge and sharing of information related to territorial 

policies, such as those concerning urban development. In this framework, the work will be 

further developed, covering the following main elements: 

 Development of the European Urban Data Platform, providing a single access point 

for data and indicators on the status and trends of European urban areas; 



 

 

 

6 

 Updates of the LUISA configuration, to account for new socio-economic projections; 

 Support to the development of the EU Urban Agenda and related initiatives; 

 Provision of evidence-based support for the evaluation of territorial policies in 

particular to proof the role of cities in the implementation of EU priorities. 
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1. Introduction  

Cities lead economic growth and innovation in Europe. They host the majority of the 

population, providing opportunities for employment and an abundance of social and 

cultural activities. At the same time, cities are also confronted with important 

environmental, social and economic problems such as: air pollution, flooding, congestion, 

risk of segregation and poverty, unemployment, and inadequate social services. European 

institutions, national and local authorities set policies for the sustainable development of 

cities and urban areas. These aim at maintaining economic productivity and innovation in 

cities, improving the quality of life and addressing the main environmental and social 

problems.  Beforehand evaluation of the potential implication of such policies at the city 

and EU level is becoming increasingly important. This report aims to contribute to this 

effort by introducing a set of spatial indicators to assess the current state of European 

cities and their possible future development following a baseline reference scenario 

resulting from a territorial modelling approach. 

The Land-Use based Integrated Sustainability Assessment (LUISA) Modelling Platform is 

designed for the evaluation of EC policies with direct or indirect territorial impacts (Lavalle 

et al., 2011; 2013a). It provides a comprehensive, harmonised and consistent spatial 

analysis of environmental and socio-economic changes in Europe. LUISA is based on the 

concept of ‘land functions’ for cross-sector integration. It is an activity-based model, based 

on an endogenous dynamic process of population, services and activities allocation. It has 

coherent linkages with other Europe-wide macroeconomic and biophysical models and 

derives information from several European thematic databases and scenarios. LUISA 

produces territorial indicators that can be grouped together according to the ‘function’ of 

interest and/or the sector under assessment (LUISA, 2015). 

The core of LUISA is a computationally dynamic spatial model that allocates population, 

activities and services based on biophysical and socio-economic drivers. LUISA generates 

three primary outputs at 100 meters spatial resolution: (1) land use/cover, (2) population 

and (3) accessibility. Several other spatial indicators are derived from these three main 

outputs to assess policy effects on various themes such as resource efficiency, urban and 

regional development, and the provision of ecosystem services (Batista et al., 2013; 

Baranzelli et al., 2014b). 

This technical report introduces a collection of spatial indicators to assess the present and 

future state of European cities and regions. These can be grouped in 10 categories: 

 Degree of urbanization – the projected degree of urbanization,  

 Urbanization – the urban proportion and annual rate of urbanization, 

 Land use and urban development – the land take and land use intensity analysis, 

 Population –the analysis of total population changes, 

 Population weighted density – the population weighted-density analysis, 

 Recreation opportunities – the nature based recreation opportunities and demand, 

 Air quality –analysis of NO2 and PM10 concentrations and exposure, 

 Accessibility – the  potential accessibility and average travelled distances, 

 Green infrastructure – the share of green infrastructure (GI) and GI per capita, 

 Urban flood Risk – the flood risk assessment index.  

These urban indicators serve to characterise the processes of urbanization and urban 

development in Europe; explore the territorial dimensions of projected demographic and 

economic changes, and finally, examine key environmental challenges that urban areas 

need to address. For a wider assessment, all these indicators are designed to be able to 

highlight similarities / dissimilarities of countries and regions; to capture the main 

directions of land use / land cover based changes and their likely impacts; and to explore 

differences between urban and rural areas in Europe.  
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The report is also aimed at providing a base for further work which would establish clear 

links between these assessments and policy implementations for the future of cities and 

sustainable urban development. 

The following section provides a description of the LUISA Modelling Platform, its drivers 

and assumptions. Section 3 focuses on the assessment of the present and future state of 

European cities and urban areas based on the LUISA urban indicators. Section 4 provides 

a summary of the main findings and section 5 contains the concluding remarks. 
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2. The LUISA Modelling Platform 

2.1 Description of the model 

The Land-Use based Integrated Sustainability Assessment (LUISA) Modelling Platform is a 

model framework simulating land-functions. It is developed by the Joint Research Centre 

(JRC) of the European Commission (EC), and used for the ex-ante and ex-post evaluation 

of EC policies with direct or indirect territorial impacts (Lavalle et al., 2011).  

The core module of LUISA allocates population, services and activities to the most optimal 

100m grid cells, given predefined suitability maps, regional demands and the supply of 

resources in a region. Grid cell population counts are linked to the allocated land uses, 

which are modelled separately prior to the land-use allocation. The platform’s starting 

point is a refined version of the CORINE land cover data for 2006, and population levels 

that are consistent with that data source. LUISA simulates the dynamic process of 

population and land use change on an annual basis, starting in 2006 and continuing until 

2050. The resulting annual output serves as direct input for the calculation of the 

subsequent year. 

The three primary outputs that LUISA generates are land use / cover, population and 

accessibility distributions. The thematic detail of the land use / cover projections is 

particularly fine and discerns classes such as industrial and urban at various densities, as 

well as various agricultural land uses. Abandonment processes in urban and rural areas 

are also simulated. Over 50 indicators of land functions are derived from LUISA’s main 

outputs providing valuable information on various themes such as resource efficiency, 

sustainable urban development, ecosystem services and accessibility.  

A detailed description of LUISA and its reference scenario can be found in Lavalle et al. 

(2013a) and Baranzelli et al. (2014a). A description of the projected changes under the 

2014 reference scenario can be found in Baranzelli et al. (2014b) and Barbosa et al. 

(2014). 

2.2 The reference scenario, main drivers and assumptions 

LUISA can be configured according to various socio-economic and policy scenarios. The 

results produced in this report are obtained from the LUISA’s 2014 reference 

configuration; for which the main drivers and assumptions are outlined in this section. 

LUISA is composed of three separate modules that are tasked with: (1) the management 

of regional sectoral trends and associated demands for resources and commodities; (2) 

the allocation of activities, services and population expectations to fine resolution rasters; 

and (3) the computation of various indicators needed to determine policy effects. The 

structure of the model including the urban indicators is illustrated in Figure 1.  

The allocation module is driven by future trends supplied by upstream models or other 

sources (e.g. projections or results from EUROSTAT, ECFIN, GEM-E3 and CAPRI). For 

instance, the evolution of the artificial land uses is driven by the official demographic 

projections produced by Eurostat EUROPOP 2010 (residential and other urban classes) and 

the Gross Value Added (GVA) projections from the GEM-E3 model (for 

industry/commerce/services). Figure 2 shows, the regional GDP and population 

projections included in the reference scenario and the population distribution downscaled 

from regional level to 100 meters resolution. In general, those models provide outputs at 

various geographical scales that range from NUTS2 to the national level. Because of the 

large differences in detail and typology of input data, additional information (Table 1) are 

used in LUISA to ensure consistency in used data projections. For more information we 

refer to Baranzelli et al. (2014b).  
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Figure 1: The LUISA Modelling Platform and urban indicators. 

Table 1: Regional and national socio-economic drivers in the LUISA Configuration 2014. 

Data and land 

use type 

Source Geographical Unit 

Population Externally downscaled national projections 

EUROPOP 2010 (EUROSTAT) 

NUTS2 

Urban Population NUTS2 

 Historical household sizes (EUROSTAT)  

 Tourism land use intensity (Data Hub for the 

Energy Performance of Buildings) 

 

 Tourism growth rates (UNWTO)  

Industrial GVA projections (GEM-E3) NUTS2 

Forest Extrapolation of historical national forest 

accounts (UNFCC) 

National 

Agriculture Agricultural commodity projections (CAPRI) CAPRI-particular 

regions 
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GDP in 2010 

 
GDP in 2050 

 
Population density in 2010 

 
Population density in 2050 

 
Change in Population between 2010-2050 

Figure 2: Regional GDP and population projections as macro drivers of the model 
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The projected land use demands are allocated to 100m grid cells by means of a two-step 

procedure. In the first step, regional changes in population plus an additional 10% of the 

existing population are allocated to grid cells. This is based on a function that defines the 

attractiveness of each pixel for residence. Any grid cell that subsequently holds at least 

six people is converted into urban land use; any currently urban grid cell that subsequently 

holds less than two people is flagged as abandoned urban land use. This method is 

constrained by a routine that does not allow a decimal number of people in any grid cell; 

some iterations are done to ensure that whole people are allocated everywhere. The 

method is furthermore constrained to ensure that urban conversions always match the 

expected number of urban grid cells.  

In the second step, all non-urban land uses are allocated assuming competition between 

those uses. Land use specific functions define how attractive a grid cell is for a given land 

use. Land uses are assumed to maximize their utility; a simulated bidding process is used 

to determine final land use patterns. This method is constrained by the land use demands 

that are determined upstream; the method is furthermore constrained by the supply of 

land in a region. A large number of factors determine the attractiveness of a grid cell for 

a certain land use. The most important factors are listed in Table 2. 

Table 2: Selection of factors driving the attractiveness of grid cells for land uses and 

population in the LUISA model. 

Factor Variable Affects 

Suitability factors 

Potential accessibility Population + land uses 

Slope Population + land uses 

South-facing slope Land uses 

Distance to water body Land uses 

Distance to roads Population 

Travel time to towns Population 

Neighbourhood factors 
Land uses in immediate neighbourhood Land uses 

People in immediate neighbourhood Population 

Prior land use 

Matrix of conversion costs between land uses Land uses 

Estimated effect of prior land use on 
attractiveness 

Population 

Policies 

CAP through location-specific incentives or 
restrictions 

Agricultural land uses 

NDA through location-specific restrictions Population + land uses 

TEN-T through potential accessibility changes Population + land uses 

Energy directive through new energy crop 
incentives 

New energy crops land 
use type 

Cohesion policies-location specific incentives Population + land uses 

2.3 LUISA land function indicators 

The ultimate product of LUISA is a set of territorial indicators that can be grouped and 

combined according to the ‘land function’ of interest and/or the sector under assessment. 

A land function (Lavalle et al., 2015) can, for example, be physical (e.g. related to 

hydrology or topography), ecological (e.g. related to landscape or phenology), social (e.g. 

related to housing or recreation), economic (e.g. related to employment or production or 

to an infrastructural asset) or political (e.g. the consequence of policy decisions). This 

section briefly presents the land function indicators developed within LUISA. The indicators 

are projected in time until typically 2030 or 2050, and can be represented at various 

geographical resolutions (national, regional or other). Table 3 illustrates how the indicators 

are thematically grouped. A catalogue of land function indicators is available in Lavalle et 

al. (2015). 
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Table 3: LUISA land function indicators 

Land function Division Sub-division Indicator Code Unit 

 
 

Provision of 
work 

Employment 

Industrial / 
Commercial/ 
Services 

Employment     in Industrial, 
commercial, Services 

% of total population 

Agricultural Employment in Agriculture  % of total population 

Economy  GDP  
GDP (million EUR) 

GDP / capita  (million EUR/capita)  

Provision of 
leisure and 
recreation 

Recreational 
and cultural 
services 

Physical and 
experiential 
interactions 

Recreation potential 
Dimensionless  
(9 categories) 

 
 

Provision of 
land and 

water based 
products 

 
 
 

Water Water flows 
Water consumption (m3) 

Water productivity (EUR per m3) 

Food and 
Biofuels 

Food and Feed 
Crops 

Food and feed production (1000t/ha/a) 

Energy content of produced 
food and feed 

(MJ/ha/a) 

Energy Crops 

Biomass harvested from 
energy crops 

(1000t/ha/a) 

Energy content of dedicated 
energy crops 

(GJ/ha/a) 

Wood 
Biomass 

Forest 

Biomass harvested for 
material and energy uses 

(t/ha/a) 

Energy content of wood 
production 

(MJ/ha/a) 

 
Provision of 
housing and 

transport 

Settlements 

Residential areas 

Share of residential areas 
over the total land area 

% of total land 

Residential areas per 
inhabitant  

(m2/person) 

Population Density Inhabitants/km2 

Industrial areas 

Share of industrial / 
commercial/ services areas 

km and % 

Industrial economic output 
per unit of industrial / 
commercial area 

(euro/ha) 

Built-up areas 

Share of built-up areas over 
the total land 

km and % 

Productivity of built-up areas (EUR per km2) 

Built-up per person (m2/capita) 

Transport 

Potential accessibility (dimensionless) 

Network efficiency (dimensionless) 

Local accessibility (dimensionless) 

Daily accessibility (dimensionless) 

Provision of 
regulation by 

natural 
physical 

structures and 
processes 

Mediation of 
waste, toxics 
and other 
nuisances 

Mediation by 
ecosystems  
(Capacity of 
ecosystem to 
remove air 
pollutants) 

NO2 removal by urban 
vegetation 

(t/ha/year) 

Urban population exposed to 
PM10 concentrations 
exceeding the daily limit 
value on more than 35 days 
in a year 

% 

Urban population exposure 
to air pollution by particulate 
matter 

μg/m3 

Mediation of 
flows 

Mass flows 
(Capacity of the 
Land Cover to 
prevent soil 
erosion) 

Capacity of ecosystems to 
avoid soil erosion  

(dimensionless) 

Soil retention  (t/ha) 

Liquid flows  
(Capacity of 
coastal ecosystem 

to protect against 

Ratio between capacity and 
demand for coastal 
protection 

(under development) 

(dimensionless) 
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inundation and 
erosion from 
waves, storm or 
sea level rise) 

Liquid flows  
(Capacity for 
retention of water 
in the landscape) 

Water Retention (dimensionless) 

Maintenance 
of physical, 
chemical, 
biological 
conditions 

Lifecycle 
maintenance, 
habitat and gene 
pool protection 

Relative pollination potential (dimensionless) 

Soil formation 
composition 

C- Stock changes (t/ha) 

Atmospheric 
composition 
and climate 
regulation 

Global climate 
regulation by 
reduction of GHG 
concentrations 

Micro climate 
regulation 
(Capacity of 
ecosystems to 
regulate urban ) 

Cooling effect 
 

(dimensionless) 

 
 
 

Provision of 
Land 

supporting 
ecosystems 

and 
biodiversity 

Biodiversity 
conservation 

Habitat 
conservation 

Habitat conservation Status (dimensionless) 

Habitat quality 
indicator 

Habitat quality based on the 
species distribution of all 
common birds included in the 
Common Bird Index 

(dimensionless) 

Habitat quality based on the 
species distribution of forest 
birds included in the 
Common Bird Index 

(dimensionless) 

Habitat quality based on the 
species distribution of 
farmland birds included in 
the Common Bird Index 

(dimensionless) 

Maintaining 
ecosystems 

Structural Green 
Infrastructure  

Proportion of land area 
covered by green 
infrastructure (GI) 

% 

GI fragmentation Effective mesh density 
(Number of meshes -
1000 km²) 

Landscape 
fragmentation by 
artificial areas 

Effective mesh density 
(Number of meshes -
1000 km²) 

Source: Lavalle et al., 2015, LUISA Dynamic Land Functions Catalogue of Indicators –

Release I, Luxembourg, Publications office of the European Union. 

The assessment of land functions related to ecosystem services is performed with ESTIMAP 

(the Ecosystem Services Mapping tool), which is a consistent and flexible set of spatially 

explicit models all developed following the CICES classification (http://cices.eu/) and 

implemented in LUISA as one of the set of thematic indicators (Zulian et al. 2013, Maes 

et al. 2015). For this report, only the capacity of ecosystems to remove air pollutants has 

been compiled and used at Functional Urban Areas (FUA) scale.  

2.4 A complete list of LUISA indicators for the analysis of urban 
areas 

A set of specific indicators are defined and computed for the analysis of European cities 

and urban areas. Because of their high original spatial resolution, the LUISA urban 

indicators can be aggregated to any administrative level (e.g. municipality, NUTS3 etc.), 

or available definition of urban areas, such as Functional Urban Areas (FUA), or core cities 

as defined in the Urban Audit, or the OECD-EC defined ‘degree of urbanization’1. Composite 

                                           

1 A detailed description of spatial units used in the report is given in section 3. 
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indicators can in turn be derived from combinations of indicators. Table 4 gives an 

extended list of LUISA urban indicators classified under the following thematic fields: 

urbanization, land use and urban development, population, urban form and efficiency, 

environmental impacts, green infrastructure and accessibility. 

Table 4: List of LUISA indicators for the analysis of urban areas (FUA: Functional Urban 

Areas; LAU2: Local Administrative Units - 2) 

Indicator 
Code 

Indicator 
Name 

Measurement Unit and 
Min. Spatial Resolution 

Reporting 
Unit 

Urbanization 

URBAN1 Degree of Urbanization - Projected 
Dimensionless – 100m 
pixel 

LAU2 

URBAN2 Urban Proportion by Population Percentage – 100m pixel FUA 

URBAN3 Urban Proportion by Area Percentage – 100m pixel FUA 

URBAN4 Annual Rate of Urbanization  Percentage – 100m pixel FUA 

Land Use and Urban Development 

LAND1 Total Built-up Areas Hectare – 100m pixel FUA and LAU2 

LAND2 Total Residential Built-up Areas Hectare – 100m pixel FUA and LAU2 

LAND3 Total Industrial/Commercial Areas Hectare – 1000m pixel FUA and LAU2 

LAND4 Share of Built-up Areas Percentage – 100m pixel FUA and LAU2 

LAND5 Share of Residential Built-up Areas Percentage – 100m pixel FUA and LAU2 

LAND6 Share of Industrial/Commercial Areas Percentage – 100m pixel FUA and LAU2 

LAND7 Land Annually Taken for Built-up Areas 
LAU2 in ha/year  
FUA Km/year 

FUA and LAU2 

LAND8 Land Annually Taken for Built-up Areas per Person m2/person – 100m pixel FUA and LAU2 

LAND9 Land Use Intensity (artificial areas per inhabitant) m2/person – 100m pixel FUA and LAU2 

LAND10 Tourism Activity/Land Use Intensity 
Coordinates – any 
regional level 

FUA 

LAND11 Total Number of Industrial Facilities 
Coordinates – any 
regional level 

FUA 

LAND12 Total Number of Energy Infrastructure Facilities 
Coordinates – any 
regional level 

FUA 

Population Growth and Density 

POP1 Total Population Number of Inh. – 100m FUA and LAU2 

POP2 Population Density Inhabitants / ha – 100m FUA and LAU2 

POP3 Population Weighted Density Inhabitants / ha – 100m  FUA and LAU2 

POP3 Population Growth Rate- Projected Percentage – 100m pixel FUA and LAU2 

POP4 Population Growth Rate - Historical Percentage – LAU2 FUA and LAU2 

Urban Form and Efficiency 

FORM1 Compactness of the Largest Patch Dimensionless - various FUA 

FORM2 Urban Compactness Dimensionless - various FUA 

FORM3 Urban Sprawl UPU/m2 – 100m pixel FUA 

FORM4 
Urban Form Efficiency via ease of access to PT 
services 

Dimensionless - various FUA 

Environmental Impacts 

ENV1 
Amount of Agricultural Land Uptake by Built-up 
Areas 

Hectare – any regional 
level 

FUA and LAU2 
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ENV2 
Amount of Forest/Semi-Natural Areas Uptake by 
Built-up Areas 

Hectare – any regional 
level 

FUA and LAU2 

ENV3 Atmospheric Emissions q/y – 100m pixel FUA and LAU2 

ENV4 NO2 concentration µg/m3 – 100m pixel FUA and LAU2 

ENV5 PM10 concentration  µg/m3 – 100m pixel FUA and LAU2 

ENV6 
Urban population Exposed to NO2 Concentrations 
Exceeding the EU Legislation Limits 

Percentage – 100m pixel FUA and LAU2 

ENV7 
Urban Population Exposed to PM10 Concentrations 
Exceeding the EU Legislation Limits 

Percentage – 100m pixel FUA and LAU2 

ENV8 Water Use/Consumption m3 – 100m pixel FUA and LAU2 

ENV9 Flood Risk Assessment Index Categories - 100m pixel FUA and LAU2 

ENV10 
Habitat for Bees – capacity of landscape to sustain 
wild pollinators’ activity  

Dimensionless – 100m 
pixel 

FUA and LAU2 

ENV11 Capacity of Ecosystems to Avoid Soil Erosion  
Dimensionless -100m 
pixel 

FUA and LAU2 

ENV12 Soil retention t/ha/year FUA and LAU2 

Green Infrastructure 

GREEN1 Nature based recreation opportunities 
Dimensionless – 100m 
pixel 

FUA 

GREEN2 Recreation Opportunity Spectrum (ROS) Categories - 100m pixel FUA 

GREEN3 Proportion of Potential Trips per ROS Category Percentage – 100m pixel FUA 

GREEN4 Proportion of Green Infrastructure  Percentage – 100m pixel FUA and LAU2 

GREEN5 Fragmentation of Green Infrastructure 
Mesh density – 100m 
pixel 

FUA and LAU2 

GREEN6 Green Infrastructure fragmentation per capita 
Number of meshes – 
100m pixel 

FUA and LAU2 

GREEN7 Connectivity of Green Infrastructure Percentages – 100m pixel FUA 

GREEN8 Access to Green Urban Areas 
Dimensionless – 100m 
pixel 

FUA 

GREEN9 Removal capacity of NO2 by vegetation T/ha*Y – 100m pixel FUA and LAU2 

GREEN10 Removal capacity of PM10 by vegetation T/ha*Y – 100m pixel FUA and LAU2 

GREEN11 Land surface emissivity 
Dimensionless – 100m 
pixel 

FUA and LAU2 

GREEN12 F-evapotranspiration 
Dimensionless – 100m 
pixel 

FUA and LAU2 

GREEN13 
Total number of sports/cultural/health-care 
facilities 

Coordinates - any reg. 
level 

FUA 

GREEN14 Fragmentation by artificial areas 
Mesh density – 100m 
pixel 

FUA  

Accessibility 

ACCES1 Accessibility – Population Potential  
Dimensionless – 100m 
pixel 

FUA and LAU2 

ACCES2 Accessibility – Daily Population Potential 
Dimensionless – 100m 
pixel 

FUA and LAU2 

ACCES3 Accessibility – Local (Nearest Town) 
Dimensionless – 100m 
pixel 

FUA and LAU2 

ACCES4 Average Travelled Distances Kilometres – 1km FUA 

 

It is worth mentioning here that not all indicators available within the LUISA Platform are 

used in this report; only a set of relevant urban indicators have been selected. The list of 

indicators is continuously being extended. For instance, a range of indicators concerning 

the production and consumption of energy at the municipal and regional level are being 

defined and computed at the time of writing this report. 
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3. Assessing the present and future state of European cities – 

the LUISA urban indicators 

3.1 The main concept of the assessment 

This section of the report introduces a selection of LUISA urban indicators developed in 

several thematic fields to assess the present and future state of European cities and 

regions. These indicators highlight the main dynamics of urbanization and urban 

development and explore significant changes in land use / land cover, population patterns, 

recreation potentials, green infrastructure, air quality, food risk and accessibility. These 

indicators and the type of analysis can be shortly listed as following. 

 Degree of urbanization – with the projected degree of urbanization analysis,  

 Urbanization – with urban proportion and  annual rate of urbanization analysis, 

 Land use and urban development – with land take and land use intensity analysis, 

 Population – with the analysis of total population changes, 

 Population weighted density – with population weighted density analysis, 

 Recreation opportunities – with the analysis of nature based recreation 

opportunities and demand, 

 Air quality – with the analysis of NO2 and PM10 concentrations and exposure, 

 Accessibility – with the analysis of potential accessibility values and average 

travelled distances, 

 Green infrastructure – with the analysis of share of green infrastructure (GI) and 

GI per capita, 

 Urban flood risk – with the flood risk assessment index.  

The LUISA urban indicators aim to improve our understanding of urbanization and urban 

development processes in Europe; to explore territorial dimensions of projected 

demographic and economic changes, and to examine some key environmental challenges 

that urban areas are or may be exposed to.  

These indicators are designed to be able to highlight similarities and dissimilarities 

between countries and regions; to capture the main direction of land use / land cover 

based changes and their likely impacts, and explore differences between urban and rural 

areas in Europe. The subsequent sections present the assessment of the state of European 

cities and urban areas with the above mentioned indicators. 

The production of LUISA high resolution projection maps on land use and population from 

2010 to 2050 constitutes the primary step in the assessment. In the second step, in order 

to analyse urbanization, urban development and territorial dimensions of change in other 

themes, several GIS-based spatial and statistical techniques were applied for each 

indicator. 

The results are summarized at the EU-28, Member State and Functional Urban Areas (FUA) 

level. In the majority of cases the results are also disaggregated by degree of urbanization. 

The spatial units used throughout the report are summarized in Table 5. Furthermore, 

specific cities have been selected and further analysed to illustrate local characteristics 

and trends. 
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Table 5: Description of the spatial units 

Spatial Units Description 

Population grid      
A grid composed of 1 km2 cells, each containing a 
population counts. 

City 
Technical term: densely populated 
area 

A local administrative unit (LAU) where the majority of 
the population lives in an urban centre of at least 50 000 
inhabitants. 

 

Urban centre 

Technical term: High-density cluster 

High density cluster of contiguous grid cells of 1 km2 with 
a density of at least 1500 inhabitants per km2 and a 
minimum population of 50 000. 

 

Commuting zone 
A commuting zone contains the surrounding travel-to-
work areas of a city where at least 15 % of their 
employed residents are working within the urban area. 

Functional Urban Area 

The functional urban area consists of a city plus its 

commuting zone. This was formerly known as LUZ 
(larger urban zone). 

 

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:High-density_cluster
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Degree of urbanization  

 
The new degree of urbanization indicates the character 
of the area where the respondent lives. Three types of 

area have been identified: thinly populated areas, 
intermediate density areas and densely populated areas. 
 

Rural area      

Technical term: thinly populated area 

 
An area where more than 50 % of the population lives in 

rural grid cells, as used in the degree of urbanisation. 
 

Town and suburbs 
Technical term: Intermediate density 
area  

 
Areas where less than 50 % of the population lives in 
rural grid cells and less than 50 % live in high-density 
clusters, as used in the degree of urbanisation. 

 

Urban area  The sum of cities, towns and suburbs. 

Local administrative unit (LAU) 
 

 
The local administrative units, abbreviated as LAUs form 

a system for dividing up the economic territory of the 
European Union (EU) for the purpose of statistics at local 
level. They have been set up by Eurostat and they are 
compatible with NUTS.  
 
At local level, two levels of LAU have been defined:  

 The upper level (LAU1, formerly NUTS level 4) is 
defined for most, but not all, of the countries.  

 The lower level (LAU2, formerly NUTS level 5) 
consists of municipalities or equivalent units in 

the 28 EU Member States. 
 

Source: EUROSTAT (2015a), Regions and cities glossary, http://ec.europa.eu/eurostat/statistics-
explained/index.php/Category:Regions_and_cities_glossary – access date 15/12/2015; EUROSTAT (2015b), 
European cities – the EU-OECD functional urban area definition, Authors: Lewis Dijkstra and Hugo Poelman 
(European Commission, DG Regio), http://ec.europa.eu/eurostat/statistics-
explained/index.php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_definition - access 
date 15/12/2015. 

  

http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Thinly-populated_area
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Intermediate_density_area
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Intermediate_density_area
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Local_administrative_unit_(LAU)
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:EU
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Eurostat
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:Nomenclature_of_territorial_units_for_statistics_(NUTS)
http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Glossary:European_Union_(EU)
http://ec.europa.eu/eurostat/statistics-explained/index.php/Category:Regions_and_cities_glossary
http://ec.europa.eu/eurostat/statistics-explained/index.php/Category:Regions_and_cities_glossary
http://ec.europa.eu/eurostat/statistics-explained/index.php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_definition
http://ec.europa.eu/eurostat/statistics-explained/index.php/European_cities_%E2%80%93_the_EU-OECD_functional_urban_area_definition
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3.2 Degree of urbanization 

The concept of degree of urbanization was introduced in 1991 to indicate the character of 

a populated area. It distinguished three types of areas: densely, intermediate and thinly 

populated areas. This definition was based on the population size and density and spatial 

contiguity of level 2 - Local Administrative Units (LAU2). It is important to note that LAU2 

vary considerably in areal size, and that this may reduce the comparability of results 

between countries with large LAU2 and those with small LAU2. In 2010, a new urban-rural 

regional typology was published in the Eurostat regional yearbook to be used by all 

Commission services. This typology was derived from the Organisation for Economic 

Cooperation and Development (OECD) method. While the OECD method defines rural 

regions based on the share of population in rural LAU2 and their population density, the 

new method is based on grid cells of 1 km2. As the grid cells are identical in size, this new 

method eliminates the distortions of using LAU2 that vary in size. The two main 

advantages of this method are greater comparability and a harmonisation of spatial 

concepts (Dijkstra and Poelman, 2014). 

3.2.1 The degree of urbanization classification 

The concepts of urban and rural areas are widely used by policymakers, researchers, 

national administrations and international organisations such as the OECD, the United 

Nations (UN) and the European Commission (EC). These two terms are well known by the 

public, but a clear definition at the international level has remained elusive. The degree of 

urbanization developed by the OECD and DG REGIO provides a shared definition of the 

concepts which also increases the coherency and availability of data. 

A growing number of countries in the EU have created population grids based on 

population registers or other detailed sources of where people live (the so-called bottom-

up method). This provides much more detailed and accurate information about the 

population distribution within a country and within Local Administrative Units (LAU2). 

By using a population grid (1 km2), it is possible to classify each pixel into 3 distinct classes 

according to the methodology described below: 

Grid cell classification: 

1. High-density clusters (or urban centres): Contiguous grid cells of 1 km2 with a 

density of at least 1500 inhabitants per km2 and a minimum population of 50000.  

2. Urban clusters: Clusters of contiguous grid cells of 1 km2 with a density of at least 

300 inhabitants per km2 and a minimum total population of 5000.  

3. Rural grid cells: Grid cells outside high-density clusters and urban clusters, where 

the density stands for the population divided by land area. 

The classified population grid is then used to create a three-way classification of LAU2, 

according to the following thresholds: 

LAU2 classification: 

The new degree of urbanization creates a three-way classification of LAU2 as follows:  

1. Cities (Densely populated areas): At least 50% of the population living in high-

density clusters (alternative name: urban centre).  

2. Towns and Suburbs (Intermediate density areas): (alternative name: towns and 

suburbs). Less than 50% of the population living in rural grid cells; and • Less than 

50% living in a high-density cluster.  

3. Rural Areas (Thinly populated areas): More than 50% of the population living in 

rural grid cells. 
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3.2.2 Degree of urbanization projections for the EU-28 

The degree of urbanization was calculated for the years 2010, 2020, 2030, 2040 and 2050 

based on the LUISA population projections. The outputs for 2010 and 2050 are presented 

in Figure 3 and Figure 4. Figure 5 illustrates changes in the degree of urbanization over 

this time period and Figure 6 and Figure 7 represent aggregated graphical results of the 

trends in the degree of urbanization. 

 

Figure 3: Degree of urbanization for EU-28 in 2010. 
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Figure 4: Degree of urbanization for EU-28 in 2050. 
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Although the changes do not follow a particular spatial pattern, the majority of changes in 

the United Kingdom, France, Austria and Czech Republic are towards an increase in the 

number of urban areas, whereas several parts of Germany, Romania and Poland show a 

reduction in number urban areas over time (Figure 5). 

 

Figure 5: Change in degree of urbanization between 2010 and 2050. 
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As indicated in Figure 6, the large majority of LAU2 are classified as rural areas (thinly 

populated), followed by towns and suburbs (intermediate). The number of LAU2 classified 

as rural areas are expected to decrease until 2020 then increase until 2050, although not 

reaching 2010 levels again. The number of towns and suburbs decreases slightly between 

2010 and 2050, while the number of cities (densely populated) increases in the same 

period. 

 

Figure 6: EU-28 number of LAU2 by degree of urbanization between 2010 and 2050. 

Since LUISA also produces projected population grids, it is possible to visualise population 

changes according to the degree of urbanization classification. As shown in Figure 7, the 

EU-28 population is mainly located in cities. There is an increase in total population within 

cities while there is a decrease in towns and suburbs and rural areas, most notably 

between 2010 and 2020. These results, together with the previous analyses, indicate 

higher urbanization rates in Europe during the coming decades. 

 

Figure 7: EU-28 population by degree of urbanization between 2010 and 2050. 
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3.3 Urbanization 

3.3.1 Urban proportion 

According to the UN World Urbanization Prospects (UN, 2014), as of 2010, 52% of the 

total world population lives in urban areas and it is supposed to increase linearly up to 

2050 where the average urban proportion is estimated to reach 60% by 2030 and 66.5% 

by 2050. The European Union has a more urbanized structure as compared to the rest of 

the world, with an urban proportion of 74% according to the UN 2010 values. The 

urbanization rate is therefore lower than the rest of the world where the urban proportion 

in the EU-28 is supposed to reach 78% by 2030 and 83% by 2050 as indicated in Figure 

8. 

LUISA proposes an original methodology, to measure urban proportion in Europe using 

the new degree of urbanization classification based on the population grids2. According to 

the results of this new technique, as of 2010, the urban proportion (proportion of the 

population in cities, towns and suburbs) within the EU is almost 80%. This proportion 

varies significantly from the UN estimates reaching to 87% in 2030 and 88% in 2050, with 

a higher growth rate within the first 20 years period and a decreasing growth rate within 

the second (Figure 8). 

 

Figure 8: Change in urban proportion within the European Union and the World. 3,4 

At country level, Malta, the Netherlands, the United Kingdom and Belgium have the highest 

urban proportions with 98%, 94%, 90% and 87% respectively. The countries which have 

                                           

2 Urban proportion for the EU-28 is calculated based on the OECD-EC degree of urbanization methodology that 
uses 1 km2 population grids (Dijkstra and Poelman, 2014). These grids are clustered into three classes based on 
the projected population: 1) Cities, 2) Towns and suburbs, and 3) Rural Areas; and are then used to classify 
Local Administrative Units (LAU2) under these three classes. Urban proportion calculations in this study use total 
LAU2 populations classified under cities, towns and suburbs as urban areas. 
3 The source for the historical population data and the UN urban proportion data for the World and EU-28 is the 
report entitled ‘World Urbanization Prospects: The 2014 Revision’ (UN, 2014). The EU-28 total population and 

the urban proportion from 2010 to 2050 are based on the LUISA population projections. 
4 The UN definition for urban areas depends on the various definitions by national statistical institutes. Hence, 
LUISA urban proportion estimated from 2010 to 2050, using the population grids based on the new degree of 
urbanization, slightly differs from the UN numbers for urban proportion. In order to remove this difference for 
comparability and maintain consistency with the historical data, the UN urban proportion value for 2010 was 
matched with the LUISA urban proportion estimate for 2010 and then the proportion between these values was 
applied to the urban proportion data going back from 2010 to 1950. 
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the lowest share of people living in cities, towns and suburbs are Croatia, Slovakia, Austria 

and Romania with 60%, 63%, 65% and 66% respectively. As indicated in Figure 9, less 

urbanized countries close the majority of the gap between them and the more urbanized 

countries up to 2050. From 2010 to 2050, Ireland, Luxembourg, Romania, Lithuania, 

Estonia and Poland record the most remarkable changes in urban proportion. 

 

Figure 9: Urban proportion by countries and years. 

Considering all 672 Functional Urban Areas (FUA) in Europe, the average urban proportion 

is 90% in 2010, and it becomes 93% in 2030, and 94% in 2050. The urban proportion in 

FUA of countries like the UK, Greece, the Netherlands, Spain and Romania is above 95%, 

as indicated in Figure 10. On the contrary, countries such as Czech Republic, Slovakia, 

and Denmark have urban proportions of less than 80% when only the FUA are taken into 

consideration.  

3.3.2 Annual rate of urbanization 

Another important indicator in monitoring urbanization process is the annual rate of 

urbanization, in other words the annual rate of change in urban population proportion. The 

average annual rate of urbanization across the World is 0.82% from 2010 to 2030, it 

decreases to 0.53% between 2030 and 2050. Over the whole period, the average rate is 

0.72% (UN, 2014)5. 

The LUISA estimate for the average annual rate of urbanization across the EU-28 is almost 

half of the World average with only 0.48% between 2010 and 2030. It decreases almost 

ten times in the consequent 20 years to reach 0.05%; the average rate for the whole 

forty-year period is 0.27%.  

Considering the country specific annual rate of urbanization as indicated in Figure 11, in 

the first twenty-year period countries such as Ireland, Lithuania, Romania, and Poland 

leave the EU-28 average behind with the highest urbanization rates. This is also the case 

for some countries like Luxemburg, Austria, Slovenia, Slovakia and Denmark, which have 

with lower annual rates of urbanization but remain above the EU-28 average in the 

subsequent twenty years. 

 

                                           

5 Since the numbers indicate the projection of the annual rate of change in urban proportion, there is no 

inconsistency in comparing them with the LUISA estimates for the EU-28. 
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Figure 10: Urban proportion by Functional Urban Areas (FUA). 
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Figure 11: Annual rate of urbanization by countries. 

With an average of 90% urban proportion, FUA have much lower annual rate of 

urbanization values. The EU-28 average annual rate of urbanization for FUA is 0.21%; less 

than half of the EU average. This rate decreases to almost zero with a value of 0.02% 

within the 2030-2050 period. As indicated in Figure 12, for some FUA such as the ones in 

Spain, United Kingdom, Portugal and Netherlands, it can easily be stated that no further 

increase in urban proportion is foreseen in the next twenty years.  

On the other hand, the urbanization process within the FUA of countries like Slovakia, 

Ireland, Poland and Croatia is continuing. However, the annual rate of urbanization for 

FUA in these countries is still lower than for the country itself. The results imply that in 

the next twenty to forty years, urbanization in Europe will continue with lower rates. 

Besides this, urbanization will not mainly take place only in the FUA as it is in the past, 

but smaller cities/towns and also rural areas will be the subject of urbanization, since most 

of the FUA have already reached certain thresholds.  
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Figure 12: Annual rate of urbanization by Functional Urban Areas (FUA). 
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3.4 Land use and urban development 

Cities generate around 75% of the global revenue and attract people that are looking for 

opportunities for a better future. The more people live in cities, the higher the demand for 

housing, jobs, transport, and recreation and leisure sites. When cities grow fast and 

planning instruments fail to respond adequately to the new challenges faced, both the 

quality of life and the supporting ecosystem can be significantly affected (UN HABITAT, 

2014). 

One measure of urban development is the ‘land take’ (i.e. the amount of land converted 

into artificial or built-up areas) and the intensity of land used (i.e. the actual amount of 

artificial land per inhabitant) (European Commission, 2014). Land take results in land 

degradation; in Europe it has caused high habitat fragmentation in 30% of the land area. 

Adopting limitations to this land 

take is already a priority policy 

target at national and sub-national 

level. Land-recycling, compact 

urban development, place-based 

management and the protection of 

green infrastructure in urban areas 

are seen as positive urban 

development policies in Europe 

(European Environment Agency, 

2010). 

In this section, the future land take 

and artificial areas per inhabitant 

were estimated according to a 

reference scenario (Baranzelli et 

al., 2014b). As indicated in Figure 

13, the simulation with the 

reference scenario shows how the 

land use and population 

distribution would look like in 2050 

according to the climate and 

energy policies in Europe. The 

methodological framework relies 

on the integrated modelling 

approach of the LUISA Modelling 

Platform.  

Figure 13: Some macro figures on demographics and land use dynamics. 

3.4.1 Annual land take per inhabitant - land take intensity  

The LUISA land take intensity indicator  (Lavalle et al., 2013b) measures how much land 

initially covered by agriculture, forests and semi-natural areas is converted into housing, 

commercial, industrial and service areas over time. Coupling the amount of land take with 

the amount of population informs us on the intensity of the land take; a higher amount of 

land take per inhabitant means lower efficiency in using land resources. 

The annual land take between 2010 and 2050 at EU-28 level is approximately 1.6 

m2/capita/year. As indicated in Figure 14, it is less than 1 m2/capita/year in Bulgaria, 

Germany, Latvia, Croatia and Greece and more than 3m2/capita/year in Ireland, Finland, 

Belgium, Cyprus, Luxemburg and Sweden. The annual land take per inhabitant in Spain, 

Slovenia, United Kingdom and Lithuania is close to the EU-28 average. 

 
Note: Economy and demography are important macro 
drivers of land-use change. In the reference scenario, 
the economic and demographic assumptions are 
consistent with the 2012 Ageing Report (EC, 2012). The 
demographic projections (EUROPOP2010), were 

produced by Eurostat, whereas the long-term economic 
outlook was undertaken by DG ECFIN and the Economic 
Policy Committee. 
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http://www.eea.europa.eu/data-and-maps/indicators/land-take-2/
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Figure 14: Annual land take per capita (land take intensity) between 2010 and 2050 by 

countries. 

The annual land take per inhabitant in square meters varies throughout the EU-territory 

(Figure 15). The regions in red hues are those classified with the highest land take between 

2010 and 2050. In these regions, the amount of land converted in residential, 

industrial/commercial/ services are above 8 m2 per inhabitant per year. On the contrary, 

regions in blue hues expect no net land take (dark blue) or a land take that is lower than 

the EU-28 average (light blue).  

 

Figure 15: Annual land take per inhabitant (land take intensity) between 2010 and 2050 

at municipality level (LAU2). 
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The average annual land take per inhabitant also varies depending on the degree of 

urbanization. Most cities already have a high proportion of built-up areas, i.e. land in these 

regions is intensely occupied and virtually all available land has already been developed. 

As a consequence, land take is higher in the surrounding suburbs and rural areas than in 

the cities, and is expected to increase in the future. Under the reference scenario, the 

annual land take between 2010 and 2050 is approximately 0.80 m2/capita/year in cities, 

1.93 m2/capita/year in suburbs and towns, and 3.08 m2/capita/year in rural areas. Figure 

16 allows the comparison of this figure by country. If overall ratio per degree of 

urbanization is compared, the share of cities in annual land take per inhabitant is 14 %, it 

is 33% for suburbs and towns and 53% for rural areas, as indicated in Figure 16 with 

stacked bars. This last figure is even higher in rural areas of Denmark, Ireland, the United 

Kingdom and Sweden. 

 

Figure 16: Annual land take per inhabitant between 2010 and 2050 – the ratio per degree 

of urbanization. 

Figure 17 shows the annual land 

take per inhabitant in the Functional 

Urban Area of Brussels. In Brussels 

city centre, the land take is almost 

zero, meaning that the land 

available for built-up areas has 

already been taken in the past. The 

farther you go from the city centre, 

the higher the observed annual land 

take per inhabitant. A similar 

pattern is noticeable in the majority 

of FUA in Europe. 

Figure 17: Annual land take per capita in the Functional Urban Area (FUA) of Brussels 

between 2010 and 2050 at Local Administrative Units (LAU2) level. 

The average annual land take per inhabitants in FUA is slightly lower than that for the 

whole EU-28, with 1.5 m2/capita/year. As indicated in Figure 18, it is below the EU average 

in FUA of Latvia, Germany, Bulgaria, Croatia, Italy, and Spain; and above the average for 

instance in France, Finland, Denmark, Belgium, Ireland and Sweden. Figure 19 shows the 

annual land take per km2 in a range of 30 km distance from the city centre for six cities in 

Europe. The land take tends to start peaking after a distance of 5 km from the centre. The 

general pattern can be explained by the fact that the land available for built-up within city 

centres has already been developed, meaning that land take is mainly in the suburbs 

followed by the rural areas. Despite this general trend, highest land take occur between 5 

and 20 km distant from the city centre, the land take profiles after 5 km distance otherwise 

differ significantly across the cities. The highest amount of annual land take per km2 is 

seen in Bucharest and Brussels at 8-12 km distances with around 7000 to 9000 m2/year. 
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Figure 18: Annual land take per inhabitant between 2010 and 2050 by Functional Urban 

Areas (FUA). 
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Figure 19: Annual land take per km2 between 2010 and 2050 – the profiles for Stockholm, 

Brussels, Vienna, Barcelona, Bucharest and Palermo. 

Figure 20 shows the land take per inhabitant for the same sample of cities in Europe. For 

example, in Barcelona and Vienna land take per inhabitant gradually increases up to 4 

m2/capita/year at 30 km distance from the city centre. Stockholm shows a similar pattern, 

however, the land consumed per inhabitant is even higher with 8 m2/capita/year at the 

30 km distance from the city centre, meaning a more dispersed built-up area development. 

Palermo has a more homogenous distribution in terms of land take with distance; always 

less than 3 m2/capita/year due to the natural thresholds. In Brussels the land take per 

inhabitant gradually increases up to 6 m2/capita/year until 17 km and then drops down to 

4 m2/capita/year. Bucharest has a similar profile, however it peaks at 12 km and has a 

stronger decline down to 1 m2/capita/year at 30 km distance from the city centre. 

 

Figure 20: Annual land take per inhabitant between 2010 and 2050 – the profiles for 

Stockholm, Brussels, Vienna, Barcelona, Bucharest and Palermo. 

3.4.2 Artificial areas per inhabitant - land use intensity 

The land use intensity indicator measures the land consumption or the size of actual 

artificial areas per inhabitant, expressed in square meters per inhabitant. It provides useful 

information on the efficiency of land used for residential, sport and leisure, economic 

activities and infrastructures6. An additional analysis compares the growth rate of artificial 

                                           

6 Infrastructures (road and rails networks, ports and airports, mineral extraction, dump and construction sites) 

were taken into account in the calculation, however, in the LUISA framework they are non-simulated land use 
classes and thus remain static over time in terms of quantity and location. 

-1000

1000

3000

5000

7000

9000

11000

13000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

A
n

n
u

al
 la

n
d

 t
ak

e 
 p

er
 k

m
2

b
et

w
ee

n
   

   
   

  
2

0
1

0
 a

n
d

 2
0

5
0

  (
in

 s
q

. m
et

er
s)

 

Distance from city center (km)

Annual land take per km2 between 2010 and 2050

Stockholm Brussels Vienna Barcelona Bucharest Palermo

-2.0

0.0

2.0

4.0

6.0

8.0

10.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30A
n

n
u

al
 la

n
d

 t
ak

e 
p

er
 in

h
ab

it
an

ts
 

2
0

1
0

-2
0

5
0

 (
sq

. m
et

er
s)

Distance from city center (km)

Annual land take per inhabitant between 2010 and 2050

Stockholm Brussels Vienna Barcelona Bucharest Palermo



 

 

 

35 

areas with the total population growth rate between 2010 and 2050. The land use intensity 

trend increases when the urban growth rate is lower than the population growth rate, 

whereas if the rate of urban growth is higher than the growth rate of the population, the 

land use intensity shows a negative trend in terms of efficiency, resulting in an increased 

land consumption. 

As shown in Figure 21, the average amount of artificial areas per inhabitant in the EU-28 

as of 2010 is 498 m2. This value is less than 400 m2 mainly in the southern countries like 

Malta, Greece, Italy and Spain and less than the European average in some northern 

countries, with more compact urban development, like the United Kingdom, the 

Netherlands and Germany. On the contrary, the artificial areas per inhabitant in 2010 are 

above 800 m2 in most of the northern countries, with a more dispersed use of land, like in 

Sweden, Lithuania and Finland.  

The artificial areas per inhabitant in EU-28 increase by 8% to 539 m2 in 2050. Croatia, 

Romania, Bulgaria, Latvia, Slovakia, Ireland and Poland record the greatest amount of 

change between 2010 and 2050 in terms of artificial areas per inhabitant. Not only the 

additional land consumed but also the decrease in population plays an important role in 

these changes during the following decades, as is the case in Romania and Bulgaria. 

 

Figure 21: Artificial areas per inhabitant (land use intensity) by countries. 

Figure 22 shows the amount of artificial areas per inhabitant by Functional Urban Areas 

(FUA). Considering only the FUA, in 2010 the average amount of artificial areas per 

inhabitant is 373 m2, and becomes 388 m2 in 2050 with a 4% increase. This is only half 

of the increase rate within the whole EU-28, meaning that there is less land consumption 

per inhabitant in FUA. As mentioned earlier, in Southern Europe this value is lower (light 

yellow/yellow hues) than for the regions in Western, Central, Eastern and Northern Europe 

(light red/red hues).  

The low land use density patterns (red hues) in those FUA can be justified by the need for 

more space per inhabitant, the development of commercial and transport services, the 

preference for single houses over blocks of flats, and the influence of land use policies, 

either towards compact or sprawled cities (Kasanko et al., 2006). The high population 

density in artificial areas (yellow hues) can be attributed to a different origin. Cities located 

in the southern part of Europe are historically more compact than in the rest of Europe. 

Capital cities such as London, Paris and Brussels are already saturated with buildings but 

remain attractive to people since they supply employment, opportunities for learning, 

accessibility to health care facilities, and a variety of social and cultural activities. 
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Figure 22: Artificial areas per inhabitant (land use intensity) by Functional Urban Areas in 

2010. 
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As expected, the land use intensity/artificial areas per inhabitant also varies depending on 

the degree of urbanization. In general, the local administrative units (LAU2) classified as 

cities use land more efficiently (228 m2/capita), than towns and suburbs (501 m2/capita) 

and rural areas (1084 m2/capita). Figure 23 shows how the ratios per degree of 

urbanization differ among countries. On average, cities account for 12% in artificial areas 

per inhabitant whereas towns and suburbs make up 27% and rural areas 60% of the total. 

 

Figure 23: Artificial areas per inhabitant (land use intensity) in 2010 - the ratio per degree 

of urbanization. 

Towards 2050, the amount of available artificial areas per inhabitant tends to increase in 

almost all Member States, particularly in the rural areas as indicated in Figure 24. 

 

Figure 24: Percentage of changes in artificial areas per inhabitant (land use intensity) 

between 2010 and 2050. 

Figure 25 shows how FUA are expected to change in terms of land use intensity between 

2010 and 2050. This figure compares the growth in population (x axis) and the growth in 

artificial areas (y axis) in the reference scenario between 2010 and 2050. The colours split 

the urban areas into two groups with different land use intensity patterns. The FUA placed 

in the green area of the figure are those where the population growth exceeds the growth 

in artificial areas (right side of x-axis). Dublin, Cambridge, Pisa and Stockholm are few 

examples of urban areas that will use the artificial areas more efficiently since the 

predicted amount of land consumed per capita decreases over the period of analysis. 
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The second group corresponds to urban areas where the amount of artificial areas is 

expected to increase faster than their population (dark and light red hues). Within this 

group, two profiles can be identified. The first profile is related to the urban areas such as, 

Dusseldorf, Lleida and Perpignan where the population is expected to decrease by 2050 

(left side of y-axis) while the growth in artificial areas remains positive. As a result, the 

area consumed by each resident is increasing. The second profile of FUA includes cities 

like Barcelona, Naples, Brussels and Vienna, where the population is expected to have a 

positive growth but the amount of artificial areas is growing faster than the population. 

 

Figure 25: Annual growth in population vs. annual growth in artificial areas between 2010 

and 2050 by FUA. 

In Figure 26 and Figure 27, the distribution of artificial areas per inhabitant in a range of 

30 km distance from the city centre is given for the 6 cities introduced earlier. Similarly to 

the land take indicator, a pattern with an intense use of land in the city centres (in this 

example up to 200 m2/per inhabitant) is noticeable in all selected cities. After 10 km 

distance from the city centre the amount of artificial areas per inhabitants tends to 

increase first to 400-600 m2/inhabitant and then to 600-1000 m2 /inhabitant. 

In comparison with the other cities Barcelona has a more intense use of land at all 

distances whereas Stockholm has a less intense use of land especially beyond 20 km from 

the city centre. As indicated in figure 14, a similar pattern for the year 2050 can be 

observed with slightly more artificial areas per inhabitant farther than 3-4 km from the 

city centre. 

 

Figure 26: Artificial areas per inhabitant (land use intensity) at increasing distances from 

the city centre, for selected European cities in 2010. 
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Figure 27: Artificial areas per inhabitant (land use intensity) at increasing distances from 

the city centre, for selected European cities in 2050. 
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3.5 Population growth 

3.5.1 The EU-28 population in 2010 

In 2010, 65% of the total EU-28 population, approximately 320 million people, live in the 

672 Functional Urban Areas (FUA). The proportion of population living in FUA varies across 

EU countries from 100% in Luxembourg to 35% in Slovakia (Figure 28). 

 

Figure 28: Population distribution for the EU-28 in 2010. 

FUA with total populations greater than 1.5 million account for 39% of the population while 

FUA with fewer than 200 thousand people account for 12% of the population.  

In the EU-28, 45% of the population live in local administrative units (LAU2) which are 

considered as cities, 35% in towns and suburbs and 20% in rural areas. The highest 

proportion of LAU2 population living in cities can be found in Malta (68%) whilst the lowest 

proportion can be found in Slovakia (21%) (Figure 29). 

 

Figure 29: Population distribution per degree of urbanization in 2010. 
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3.5.2 Projected changes in population 

The amount and spatial distribution of population for the year 2050 were obtained from 

the LUISA platform reference scenario for 2014 (Baranzelli et al., 2014b). Under this 

scenario, the global trend in urbanization is likely to increase in the future (Figure 30), 

and 70% of EU the population is expected to live in FUA by 2050. 

 

Figure 30: Changes in EU population between 2010 and 2050 at FUA level. 
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The EU-28 population is expected to grow by 4.6% between 2010 and 2050. Most of this 

population growth will occur in FUA (which will grow by an average 14%) while the rest of 

the European landscape is expected to lose population (-12%, by 2050). This change will 

however be uneven across Europe. 

Changes in FUA population are likely to be heterogeneous across Europe (Figure 31). 

Countries such as Germany, Bulgaria and Hungary will lose population, whilst others will 

experience strong gains (France, United Kingdom, Italy and Spain). The highest growth 

rates (>40%) in FUA populations are expected in Luxembourg, Ireland and Finland. 

 

Figure 31: Population changes in FUA between 2010 and 2050. 

Within FUA, we will also observe a change in population distribution with more people 

living in LAU2 considered as cities (+30%) and less living in suburbs and towns as well as 

rural areas (Figure 32). Globally, we expect a decrease in the proportion of population 

living in towns and suburbs except from Malta, Estonia, Slovakia, Lithuania, Bulgaria, 

Austria, Romania and Poland. This indicates a densification of the urban habitat. This 

densification effect is, however, positively biased by the fact that LAU2 classified as towns 

and suburbs and rural areas are reclassified into cities in 2050 which leads to a 22% 

increase in the number of LAU2 considered as cities between 2010 and 2050. 

 

Figure 32: Percentage changes in population distribution between 2010 and 2050. 
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3.5.3 Population changes in selected European cities 

Figure 33 illustrates the changes in population density as a function of distance to city 

centre for 6 selected cities in 2010. We observe a similar profile for all selected cities where 

most of the population is located near the city centre, the density then decreases and 

plateaus around 14 km distance.  

Future changes in population across the selected cities (shown Figure 34) indicate that 

overall, city centres are likely to lose people (particularly Vienna), while the city outer 

rings, from 8 to 22 km, will see an increase in population. This population increase outside 

city centres is particularly notable for Bucharest, which will see its population more than 

triple in the 12-13 km ring surrounding the city centre (mostly due to the development of 

new built-up areas). 

 

Figure 33: Population profile of selected cities in 2010. 

 

Figure 34: Percentage change in population, for selected cities between 2010 and 2050. 

Figure 35 illustrates these potential changes for the city of Bucharest (Romania). We 

observe that LAU2 making up the Bucharest city centre will lose about 20% of their 

population, while the LAU2 on the outer edges of the FUA will strongly increase (more than 

double) their population, to the point to which some LAU2 currently considered as suburbs 

at the outer SW and NW corner of the FUA are reclassified as cities. 
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Figure 35: Changes in population between 2010 and 2050 for Bucharest (LAU2 level). 
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3.6 Population weighted density 

3.6.1 The population weighted density in the EU-28 

The standard measure of population density (population / total area) may be heavily 

affected by the size of geographical units. Population weighted density, measuring simply 

the average residential densities, removes this effect. It takes the smallest (residential) 

units of a city or region and computes their weighted densities where each unit is weighted 

according to its population and the population of the other units. The main formula of 

population weighted density is, D=Σ(Pidi)/ΣPi, where D is the population-weighted density 

of a superior or covering area and Pi and di the respective population and density of each 

“parcel”. A short explanation of population weighted density and an application of it can 

be seen in the report by the U.S. Census Bureau and Wilson (2012). 

In this indicator, we applied the population weighted density concept to larger 

geographical boundaries (at LAU2, FUA, and country levels) and considered 1 ha pixels as 

“parcels”. The results are presented at various levels including countries, degree of 

urbanization and cities. 

In 2010, the average population weighted density across all EU countries was 

approximately 70 persons/ha. Within FUA, this density reaches almost 95 person/ha. The 

population weighted density in FUA varies across the EU countries from 278 in Spain, to 

35 in Cyprus (Figure 36). The difference in density within and outside FUA also varies 

greatly among countries, for instance it shows high difference in Romania (average density 

of FUA is 1.75 times higher than the average density of the country), and no difference in 

Luxembourg. 

 

Figure 36: Population weighted density distribution within FUA and all municipalities for 

EU-28 in 2010. 

Population weighted density also differs across different degrees of urbanization. The 

average EU-28 population weighted density is roughly 120 persons/ha in cities; 45 

persons/ha in suburbs and towns and 20 persons/ha in rural areas. The highest average 

densities in cities (LAU2 level) can be seen in Spain with 320 persons/ha, and in Greece 

and Slovenia with almost 200 person/ha while Cyprus presents the lowest density in cities 

with only 45 persons/ha. Figure 37 represents population weighted density by country and 

degree of urbanization. 
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Figure 37: Population weighted density per degree of urbanization for the EU-28 Member 

States. 

3.6.2 Projected changes in population weighted density 

The amount and spatial distribution of population for the year 2050 were obtained from 

the LUISA platform reference scenario (Baranzelli et al., 2014b). Under this scenario, the 

average population weighted density is likely to decrease slightly across the EU-28 in the 

future. The average population weighted density in FUA is also expected to decrease to 85 

by 2050. However, these changes in population weighted density are likely to be spatially 

heterogeneous (Figure 39). Population weighted density in FUA across most of Spain, 

Sweden and Bulgaria will increase, it will mainly decrease in Germany and Croatia. 

Changes in population weighted density in FUA are likely to be heterogeneous across EU 

member states (Figure 38), with most countries seeing decreases in FUA, particularly in 

Austria (-55%), Finland (-52%) and Scandinavia (-42%), while others will strongly 

increase (Slovenia in particular by +188%). 

 

Figure 38: Changes in population weighted density of FUA, per country between 2010 and 

2050. 
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Figure 39: Changes in EU population weighted density between 2010 and 2050 at the level 

of FUA. 
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We can also observe large differences in changes of population weighted density as a 

function of the degree of urbanization (Figure 40). Overall, across the EU-28 we observe 

a decrease in population weighted density in both cities (-10%) and rural areas (-1%), 

and an increase in suburbs and towns (2%). This general trend in population weighted 

density across different degrees of urbanization is more or less pronounced and can be 

noticed across all Member States. Austria, Finland, Belgium and Sweden will show a strong 

density decrease in LAU2 considered as cities (<-50%). However, the population weighted 

density in Slovenia is expected to increase in cities by almost 300%. Finally, population 

weighted density across all degrees of urbanization will decrease in other Member States, 

such as in Luxembourg, Denmark, Scandinavia and Romania. 

 

Figure 40: Percentage changes in population weighted density per degree of urbanization 

between 2010 and 2050. 

3.6.3 Population weighted density changes for selected European cities 

Figure 41 illustrates the variations in population weighted density as a function of its 

distance to city centre (concentric rings) for 6 selected cities. For 2010, we observe a 

similar profile for all selected cities where high population weighted density in the centre 

decreases and plateaus around 12 km. The city of Barcelona has much higher weighted 

density than the other cities, reaching almost 600, as compared to a 280 maximum for 

the others. It also shows a decrease from 1 to 4 km followed by a strong increase until 7 

km from the city centre. Future changes in population weighted density for the selected 

cities (Figure 42) indicate a general decrease for Stockholm and Barcelona at all distances 

and a decrease in the city centre followed by an increase beyond 10 km from the city 

centre for Palermo, Vienna, and Bucharest. 
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Figure 41: Population weighted density for selected cities in 2010. 

 

Figure 42: Change in population weighted density for selected cities between 2010 and 

2050. 

Finally, Figure 43 illustrates these potential changes for the city of Vienna (Austria). We 

observe that the population weighted density at LAU2 level corresponding to Vienna city 

centre will strongly decrease, while the density in LAU2 on the outer edge of the FUA will 

increase. This increase will be particularly strong in the LAU2 located directly south of 

Vienna city centre where population weighted density will be more than doubled. 
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Figure 43: Changes in population weighted density between 2010 and 2050 for Vienna. 
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3.7 Nature based recreation opportunities 

3.7.1 Nature based recreation opportunities in cities 

Public, local, nature based, outdoor recreational activities include a wide variety of 

practices ranging from walking, jogging or running in the closest green urban area or at 

the river/lake/sea shore, bike riding in nature after work, picnicking, observing flora and 

fauna, organizing a daily trip to enjoy the surrounding beauty of the landscape, among a 

myriad of other possibilities. These activities have an important role in human well-being 

and health. The ESTIMAP-recreation model (Zulian et al., 2014) assesses the capacity of 

ecosystems to provide nature based outdoor recreational opportunities which can be 

enjoyed on a daily basis, i.e. mainly by people living in the area of interest (Zulian et al., 

2013; Paracchini et al., 2014). It computes a composite dimensionless indicator that 

estimates the provision of the service as the potential capacity of a group of identified 

landscapes and features to provide opportunities for local outdoor recreation.  

The provision varies according to four main components (1): the suitability of land to 

support recreational activities; (2) the blue-green infrastructure in urban areas; (3) the 

presence of natural areas, and 4) the presence and quality of water bodies and coastal 

areas (inland and sea). Table 6 shows the list of components and inputs of the model.  The 

availability of a recreation service is strictly related to its accessibility; the model therefore 

takes into account the road network structure at different scales. Each component of the 

indicator depends on a number of sub-components and related inputs that are considered 

in terms of their capacity to provide potential nature based recreation opportunities. 

Table 6: Components and inputs for recreation potential model. 

Component Inputs Expected effects on 

recreation potential 

Suitability of Land to 
support recreational 
activities 

Land use Land use types capacity to support 
recreational activities 

Urban Green Urban Areas Blue-green infrastructures play a 
key role in supporting nature based 
recreational activities in Functional 
Urban Areas 

Natural riparian areas 

Bathing water quality 

Semi-natural vegetation 
(grassland and woody 
vegetation) 

Natural  Features 
influencing the potential 

provision NATURE  

Natural protected areas The presence of protected areas 
increase the availability of 

recreation opportunities and the 
quality of the sites 

Semi-natural vegetation 

(woody vegetation and 
grassland) 

Increase of vegetation 

heterogeneity in agricultural areas 

Water  Geomorphology of coast The presence of water provides 
different opportunities for 

recreation.  
Four key aspects were considered: 
the distance from inland coast and 
sea coast; geomorphology of the 
sea coast; bathing water quality, 
and presence of natural riparian 

areas 

Marine protected areas 

Bathing water quality 

Blue flags 

Lakes 

Natural riparian areas 

Proximity  Road network The road network and built up areas 
allow the computation of a proximity 
index, the types of roads considered 
depend on the scale of the 

assessment, When focusing at a 

local scale, i.e. metropolitan, only 
pedestrian and local roads are used. 

Built-up areas 
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The model provides a spatially explicit assessment of recreation opportunities at a pan 

European scale. Figure 44 provides an overview of the potential availability of recreational 

sites. Besides that, what plays a key role is the societal demand for this service. It appears 

clear that the areas that provide the highest opportunity level are the least accessible and 

therefore cannot be enjoyed on a daily basis. 

 

Figure 44: Map of Nature Based Recreation Opportunities in Europe for EU-28 in 2010. 

In 2010, almost 320 million people live in the 672 Functional Urban Areas (FUA) within 

the EU-28, which accounts for 65% of the population. The access to daily opportunities 

for recreational activities is therefore becoming more and more important, especially 

around urbanized areas. We estimate the demand for nature based recreation 

opportunities as percentage of population that lives in the proximity of low provision areas 

and the percentage of potential short trips (less or equal to 5 km) to areas with low 

recreation opportunities. A high percentage represents a strong demand for recreational 

sites.  

Figure 45 shows the relative percentage of recreation opportunities (RP) available per 

LAU2 in 2010 classified by degree of urbanization. The rural zones in Europe provides 

higher levels of opportunities, but, as in Figure 46, cities (cities + towns and suburbs) 

generate a high amount of potential short trips to recreational sites of low level that we 

consider in high demand.  
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Figure 45: Proportion of Nature Based Recreation Opportunities per degree of urbanization 

in 2010. 

 

Figure 46: Percentage of population that live in the proximity of low provision areas per 

degree of urbanization in 2010. 

3.7.2 Projected changes in nature based recreation opportunities 

The global trend in opportunities for nature based recreation provision is likely to decrease 

in the future (Figure 47), with an average of -30% by 2050. Figure 47 shows the spatial 

trends of changes that mainly depend on transitions from natural to artificial land uses. 

The demand for recreation varies according to the availability of opportunities and the 

number of people that live in the proximity of low provision of nature based recreation 

opportunities.  

Figure 48 shows the spatial pattern of the changes of recreation demand for LAU2 in 

Europe between 2050 and 2010. We note a clear similarity in the pattern of Figure 48 and 

Figure 49 (which shows the change in population in between 2010 and 2050 at FUA level). 

The demand increases in areas with an already high population density. This means that 

besides a population growth we do not expect an increase of opportunities for nature based 

recreation. 
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Figure 47: Changes in EU recreation provision between 2010 and 2050 at LAU2 level. 

 

Figure 48: Changes in recreation demand for LAU2 between 2010 and 2050.  
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Figure 49: Changes in EU population between 2010 and 2050 at FUA level. 
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3.7.3 Recreation opportunities in selected European cities 

Figure 50 and Figure 51 illustrate the amount of recreation potential in six European cities 

moving from the city centre to a distance of 30 km, first as a relative recreation capacity 

in 2010 and then in terms of changes between 2010 and 2050. 

 

Figure 50: Relative amount of recreational opportunities in six European cities at FUA level 

from the city centre to a distance of 30 km.  

 

Figure 51: Changes in the recreation provision in six European cities at FUA level from the 

city centre to a distance of 30 km. 

Figure 52 shows the actual recreation opportunities in Barcelona and Vienna in 2010 and 

the population demand for the service in terms of percentage of potential short trips to 

low opportunity destinations. Vienna provides very low opportunities for nature based 

recreation only in the core city centre. Natural protected areas cover 24% of the FUA. 

Elements like the Biosphärenpark Wienerwald (labelled as 1 in A.2, designated as a 

biosphere reserve by UNESCO, in 2005 to protect natural and cultural elements), the 

Donauauen National Park (2 in A.2) or the Natural Park Rosalia -Koglberg (3 in A.2) are 

inside the FUA and relatively close to populated areas. Barcelona functional urban area 

lacks opportunities for nature based recreation, and more than 50% of the urban 

population lives in areas with low provision of opportunities. The natural protected areas 

cover 20 % of the FUA, including areas like Conreria-Sant Mateu-Céllecs (labelled as 2 in 

B.2) or the National Park of Sant Llorenç del Munt i l`Obac (2 in B.2), but these areas lack 

local and easily reachable opportunities. 
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Figure 52: Provision and demand of nature based recreation opportunities in the Functional 

Urban Areas (FUA) of Vienna (A) and Barcelona (B). 



 

 

 

58 

3.8 Air quality 

Air quality is the principal environmental factor linked to preventable illness and premature 

mortality and has significant negative effects on much of Europe's natural environment. 

Thus, in the EU, air quality has been of high concern since the 1970’s and several 

strategies have been implemented to improve it in the last decades. Recently, in 2013, 

the Commission adopted a Clean Air Policy Package reviewing existing EU air legislation. 

This policy package includes: 

 a new Clean Air Programme for Europe with measures to ensure that existing 

targets (included in the EU Air Quality Directive; European Commission, 2008) are 

met in the short term, and new air quality objectives for the period up to 2030; 

 a revised National Emission Ceilings Directive with stricter national emission limits 

for six main pollutants; 

 a proposal for a new Directive to reduce pollution from medium-sized combustion 

installations, such as energy plants for street blocks or large buildings, and small 

industry installations.  

3.8.1 Atmospheric emissions 

An assessment of the atmospheric emissions over Europe has been implemented gridding 

the data from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) 

model (http://gains.iiasa.ac.at/models/index.html). The gridding procedure is based on 

the LUISA modelling platform data under the reference scenario (Baranzelli et al, 2014b). 

The GAINS model (routinely used also by the European Commission for impact assessment 

studies) has been developed by the International Institute for Applied Systems Analysis 

(IIASA) and “provides a consistent framework for the analysis of co-benefits reduction 

strategies from air pollution and greenhouse gas sources” (Amann et al., 2011).  

The model considers, among other things, emissions of different compounds: carbon 

dioxide, methane, nitrogen oxides, nitrous oxide, particulate matter, sulphur dioxide, 

volatile organic compounds. Emissions of pollutants are estimated for each country, with 

five-year intervals up to 2030. Further information on the method is also available in 

Trombetti et al. (2014). 

Figure 53 shows NOx emissions in year 2010. Most of the emissions occur in the most 

densely populated areas with a significant impact also coming from the road network. Hot 

spots are also visible in the sea, due to a higher density of the vessels. The expected 

reductions in 2030 will most significantly benefit the urban areas, which will see significant 

decreases. 

 

Figure 53: NOx emissions in 2010 and expected reduction in 2030. 
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PM10 emissions are shown in Figure 54. In this case, emissions are more widespread and 

affecting urban, sub-urban and industrial areas more evenly. The expected reduction in 

emissions by 2030 will still mainly affect the urban areas even if, in this case, the trend is 

less visible and the most drastic reductions affect a more restricted area. It is also 

important to note an increase in emissions in extensive areas in Spain, the United Kingdom 

and Sweden. 

 

Figure 54: PM10 emissions in 2010 and expected reductions by 2030. 

3.8.2 NO2, PM10 and PM2.5 concentrations 

We followed two different modelling approaches to derive pollutant concentrations at 

European scale: 

 a Land Use Regression model (LUR) to simulate NO2 and PM10 at very high 

resolution (100 m) built using pollutant concentrations for 2010 from monitoring 

sites as dependent variable, and several parameters (independent variables) 

defined within a Geographic Information System (GIS). The LUR model was 

developed using Random Forest regression techniques (Breiman, 2001) and it was 

used to predict evolution of concentrations of pollutants from 2010 to 2050, 

according to predicted changes in land use and population density data taken from 

LUISA (Baranzelli et al, 2014b). The modelling exercise did not consider for the 

prediction of future concentrations specific measures or policies implemented in 

order to reduce emissions. NO2 and PM10 were analysed with this method. These 

pollutants were chosen due to the high impact that they have on human health, 

and because their concentrations are highly correlated to human activities (road 

transport for NO2 and residential combustion for PM10) and consequently the higher 

concentrations are expected to occur in cities. Besides this, we also considered the 

availability of concentration data from the monitoring stations for the base year 

2010. Limit values for concentrations of both pollutants have been set within the 

Air Quality Directive for different time scales. 

 a source-receptor model approach, to simulate PM2.5 at coarser resolution (7km), 

identified starting from a set of deterministic air quality model simulations. This 

approach is implemented through the RIAT+ (Regional Integrated Assessment 

Tool, Carnevale et al., 2012) and SHERPA (Screening for High Emission Reduction 

Potential on Air Quality, Clappier et al., 2015) models. This different approach for 

the calculations was crucial since the LUR model requires a sufficient number of 

measurement stations, which were not available for PM2.5. 
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For 2010, average values of concentrations of NO2 within FUA are lower in every country 

than concentrations of PM10; and for both pollutants, concentrations remain below the 

limits established by the EU Air Quality Directive. However, if the maximum average values 

per FUA and per country are considered, some FUA present average values close to the 

permitted limits. Comparing the maximum and average values per FUA per country, the 

different trends of the curves show the different spatial distribution of concentrations 

within countries, especially noticeable in bigger countries like Germany, Poland or Italy, 

as indicated in Figure 55. 

 

Figure 55. Average and maximum concentrations of NO2 and PM10 at FUA level per country 

in 2010. 

Figure 56 and Figure 57 present the results calculated following the LUR approach. Both 

pollutants present greater concentrations in urban areas reflecting the linkage to human 

activities. NO2 presents higher values close to main roads, and PM10 has higher 

concentrations in densely populated areas. At European scale, the regions most affected 

by high NO2 are the urban areas in the north-west of Europe and in the Po valley in Italy. 

For PM10 the regions most affected are the urban areas in southern Poland, Slovakia, 

Bulgaria and the Balkan region (in these areas high concentration values are linked to 

traditional heating systems). 

Results of PM2.5 are presented in Figure 58. The pattern simulated for PM2.5 is quite similar 

to that of PM10, as both pollutants present a similar behaviour. 
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Figure 56. N02 concentration in 2010 by FUA according to LUR modelling techniques. 
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Figure 57. PM10 concentration in 2010 by FUA according to LUR modelling techniques. 
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Figure 58. PM2.5 concentration in 2010 by FUA according to RIAT+/SHERPA models. 
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Average percentage changes in concentrations of pollutants in FUA predicted with LUR 

methods (and considering only land use policies) are relatively low between 2010 and 

2050. In most of the countries, absolute changes in NO2 concentrations will be higher than 

changes in PM10 concentrations for which changes of less than 1% are expected in most 

of the countries. NO2 concentrations will increase in most countries between 1% and 5%, 

and average decreases will occur only in FUA of Germany and Bulgaria (Figure 59).  

It is worth noting that the greatest changes in NO2 concentrations are expected in 

countries with the highest values in 2010 at FUA level. In most cases, this means an 

increase in concentrations, and as a consequence of this, that the air quality status in 

these FUA will get worse in 2050. 

 

Figure 59.  Average percentage of changes in pollution concentrations between 2010 and 

2050. 

3.8.3 Human health 

As shown in Figure 60, most of the people affected by concentrations of NO2 over the 

recommended limit (an annual average of 40 µg/m3) live in cities, close to places where 

emissions are produced. For PM10, due to the greater travelling distances of this pollutant, 

high concentrations are found further from the city centre. People living in suburbs are 

therefore affected by concentrations exceeding the limit (a daily value of 50 µg/m3, not to 

be exceeded more than 35 times per year; equivalent to an average annual value of 30 

µg/m3 according to Kiesewetter et al. (2014)). 

"Months of lost life" due to yearly PM2.5 concentrations were computed using the 

methodology presented in Anenberg et al. (2010) (Figure 61). In particular, PM2.5 yearly 

concentration has been simulated for the 2010 "current legislation" and 2030 "maximum 

feasible reductions" scenarios, using the GAINS (Amann et al., 2011) emission reduction 

estimations and the SHERPA (Clappier et al., 2015) air quality model.  

Other input data used for the calculation are derived from LUISA (population), from the 

HRAPIE project (WHO, 2013; concentration response function/ PM2.5 relative risks) and 

from the European Mortality Database (baseline mortality values). 
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Figure 60: Distribution of people exposed to concentrations of PM10 (above) and NO2 

(below) over the limits imposed by the Air Quality Directive - by degree of urbanization, 

in 2010. 

 

Figure 61. Months of life lost due to PM2.5 concentrations in 2010 under current conditions 

and in 2030 considering maximum feasible reduction measurements applied. 
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3.8.4 Concentration of NO2 and PM10 for selected European cities 

Figure 62 and Figure 63 reflect the behaviour of the different indicators of air quality with 

increasing distance from the city centre. Figure 62 presents spatial trends in 

concentrations of NO2 (above) and PM10 (below) and reflects the different nature of the 

pollutants. NO2 is most concentrated in areas where emissions occur and decays fast over 

short distances, whereas PM10 dispersion rates are higher and consequently concentrations 

remain more constant with distance. 

 

Figure 62: Change in air quality indicators with an increasing distance from the city centre, 

for selected cities. 

Figure 63 shows the removal capacity of pollutants by vegetation, expressed as a function 

of pollutant concentration. The morphology of the curve reflects the morphology of the 

city and the surface occupied by vegetation reflects the nature of the fate of the pollutant. 

In this way, the removal of PM10 is higher at greater distances from the city, where green 

areas are more abundant but concentrations of the pollutant remains relatively constant 

(Figure 63). However, removal of NO2 is relatively high close to the city centre where there 

is vegetation, and still relatively high values of NO2. 
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Figure 63: Change in removal capacity of air quality indicators with an increasing distance 

from the city centre, for selected cities. 

3.8.5 Air quality management 

Air Quality Management is a complex task, as it involves decisions at multiple 

administrative levels (international, European, national, regional…) and different 

stakeholders (policy makers, citizens, industries, etc.). This complexity is reflected well by 

the structure of the legislation in place to improve air quality that considers both “source-

based mitigation controls”, fixing binding targets of emission reductions for the future 

years and “local air quality standards”, fixing air quality concentration thresholds for 

certain pollutants. The legislation for “air quality management” is of vital importance. 

In principle the task of designing these plans has been delegated to regional / local 

authorities; in practice there are plenty of concrete challenges to be tackled, i.e. how 

competences are split between different decision levels (state / region / municipality); lack 

of management and assessment capacity at local scale, and public acceptance of local 

measures. 

However, a clear message can be conveyed in this context: in various situations, the local 

authority / city cannot tackle the air quality issue by itself, but needs to coordinate with 

higher decision levels (region / national level). A recent study (Thunis et al., 2015) has 
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clearly shown this aspect, analysing three regional areas in Europe (Benelux, South of 

Poland and the Po Valley, Figure 64). Specific indicators have been developed, to analyse 

the possibility to improve air quality through local actions, using 0 for no possible 

improvement, and 1 for full improvement.  

In all three cases considered (Figure 65), the potential for local action is limited: to a 

maximum of 25% of improvement in the case of Benelux, and higher values for the other 

two domains (up to 50% for long-term improvement, in blue, and 75% for short-term 

improvement, in red). This study was done for regional level actions; at city scale this 

behaviour is even more pronounced. Hence, in order to improve air quality, different 

decision levels would need to team up. 

 

Figure 64: Map of the three simulated areas in Thunis et al. (2015, p.187). 

 

Figure 65: Analysis of potential for local actions, for long term (blue) and short term (red) 

air quality legislation objectives. 
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3.9 Accessibility 

This section will focus on potential accessibility measures and a newly developed indicator 

in which potential average Euclidean travel distances are estimated. The potential 

accessibility measure essentially indicates the opportunity for interaction that transport 

infrastructure provides; for more information see Jacobs-Crisioni et al., 2014. The 

measures computed here are based on road travel times and population distributions in 

such a way that shorter travel times and/or higher population counts lead to higher levels 

of accessibility. The average Euclidean distances are computed by using a spatial 

interaction model from all populated 1 km grid cells to all other 1 km grid cells within 30 

minutes of travel time. This model assumes that every inhabitant only makes one trip to 

an inhabitant in any destination grid cell. 

3.9.1 Potential accessibility 

Accessibility levels vary significantly between the various member states. The highest 

accessibility levels are found in north-western Europe, while the newest member states 

and the Scandinavian countries generally have much lower accessibility levels (see Figure 

66). In most cases, accessibility values are higher within Functional Urban Areas (FUA) 

than in the country average due to higher population numbers and potentially higher levels 

of service of the road network. Only a handful of countries form an exception to this rule, 

where evidently some FUA have relatively low accessibility levels. This is presumably an 

effect of the existence of FUA in peripheral areas, and in the case of Greece even on 

islands. These peripheral FUA cause a predominance of low accessibility values in the 

averaged FUA values. 

 

Figure 66: Average accessibility values per country in 2010. 

An indicator that serves as a proxy of motorized road transport dependencies has been 

introduced for this report. For this indicator the average travel distances are computed 

assuming that all inhabitants in a zone make one trip by personal car to a destination 

within 30 minutes of driving. A straightforward spatial interaction model between all the 

populated 1km grid cells in a region is subsequently employed. The result of this method 

is a matrix with the likely number of trips for every combination of origin and available 

destinations. This method assumes that people select destinations for their one trip only 

from the set of destinations that are available; within that set of destinations they are 

more likely to go to those that have more inhabitants or that are closer to them (for further 

information, see Jacobs-Crisioni et al., 2015). The trips are distributed based on car travel 

times; later additions to this method may also include public transport travel times and 

then distribute trips based on the shortest travel time, regardless of transport mode. 
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Finally, to proxy energy consumption independent of transport modes, the as-the-crow-

flies distances for each trip are measured. We assume this gives a simple approximation 

of potential energy dependence for each origin pixel. The results of this indicator are 

currently being validated.  

When looking at the aggregate results of this indicator, it becomes abundantly clear that 

more densely populated areas (cities) are associated with smaller average travel distances 

(see Figure 67). In most cases, rural areas or thinly populated municipalities close to cities 

have the highest average distances, highlighting that those areas have an especially high 

dependence on main cities and potentially consume a relatively large amount of energy 

for transport. Remote, thinly populated (remote rural) areas are mostly associated with 

lower average travel distances, indicating that those municipalities are probably more 

autonomous with less variations due to a limited choice of destinations. Lastly, the high 

average values of Germany, France, Netherlands and Belgium are noteworthy: apparently, 

notwithstanding compact or spread urban development, the highly developed road 

networks in those countries and the associated higher potential accessibility values cause 

generally higher average distances.  

 

Figure 67: Modelled travel distances averaged by degree of urbanization using the 

EUROSTAT 2011 population grid (EUROSTAT, 2015c). 

3.9.2 Projected changes in potential accessibility 

The amount and spatial distribution of accessibility for the year 2050 has been obtained 

from the LUISA platform reference scenario for 2014. Under this scenario, substantial 

changes in population levels as well as substantial road network improvements are 

foreseen. As a result, potential accessibility levels are expected to increase particularly in 

western Europe. Nevertheless, expected mass emigration from new member states may 

cause substantial declines in accessibility levels regardless of the sizeable investments 

from EU cohesion policies to improve transport infrastructures in those states (see Figure 

68). 

When comparing modelled changes in average country accessibility levels with those 

changes at the FUA level, it becomes clear that in most cases, according to the LUISA 

outputs, FUA perform better than the modelled countries as a whole (Figure 69). Where 

accessibility values decrease, the average country level mostly decreases more than the 

average of FUA (notably in Lithuania, Romania, Hungary and Slovakia); where national 

accessibility values increase, the FUA average increases even more (notably in Denmark, 

Italy, the United Kingdom and Ireland). 
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Figure 68: Changes in EU accessibility levels between 2010 and 2050. 
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Figure 69: Changes in accessibility values 2010 - 2050 at the FUA and national level. 

3.9.3 Average travel distances in selected European cities 

It is worth having a closer look at the results on estimated average travel distances and 

potential accessibility measures for 6 selected metropolitan areas, as indicated in Figure 

70. Logically, average travel distances increase when moving away from the city centre, 

while accessibility values generally get lower. Close to the city centre population densities 

are generally higher. The accessibility results presented here indicate that those higher 

population densities provide a much larger selection of destinations in the immediate 

vicinity, so that, on average, people make trips to destinations which are closer by, 

reducing the average travel distance close to the city centre.  

Despite the overall trend of increasing average travel distance with greater distances to 

the city centre, strong differences between the selected metropolitan areas can be 

observed. For example, the difference between Barcelona and Stockholm is highly 

noticeable. Both cities have roughly similar average distances in the city centre. While the 

case of Barcelona shows consistently and sharply increasing average travel distances away 

from the city centre, average travel distances in Stockholm vary much less with distances 

from the centre.  

The differences between Barcelona and Stockholm are no doubt caused by differences in 

their urban structure. As can be seen in Figure 71, the city centre of Barcelona, with its 

very high concentration of people, will no doubt attract much more traffic from the 

metropolitan zone, thus causing steadily increasing average travel distances further from 

the centre. The underlying large disparities in terms of destination choice are underlined 

by Barcelona’s sharply decreasing accessibility profile. In contrast, the metropolitan area 

of Stockholm not only has a considerable concentration of people in the city centre, but 

also in compact sub centres in the city’s periphery. This causes a much smaller decline of 

accessibility levels with distance, and seems to cause a much gentler increase of average 

travel distances away from the city centre. 
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Figure 70: Average Euclidean travel distances (solid lines) and potential accessibility 

values (dashed lines) with increasing distance from the city centre in selected European 

metropolitan areas, based on the EUROSTAT 2011 population grid (EUROSTAT, 2015c). 

 

Figure 71: Modelled average travel distances (km) in Europe, with detailed overviews of 

Stockholm (top right) and Barcelona (bottom right), based on the Eurostat 2011 populaton 

grid (EUROSTAT, 2015c). 
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3.10 Green Infrastructure 

Green Infrastructure (GI) is defined as a strategically planned and delivered network of 

high quality green spaces and other environmental features (European Commission, 

2013). These areas are structurally and functionally “interconnected and therefore bring 

added benefits and are more resilient”. GI includes natural and semi-natural areas, 

features and green spaces in rural and urban, terrestrial, freshwater, coastal and marine 

areas. Table 7 describes the land uses considered as part of the GI network. 

Table 7: Land use classes included in the definition of Green Infrastructure (GI). 

LU Classes  Green Infrastructure 

Other Arable GI Only if HNV1 

Permanent Crops GI Only if HNV1 

Pastures GI Only if HNV1 

Forests GI 

Transitional woodland-shrub GI 

Cereals GI Only if HNV1 

Maize GI Only if HNV1 

Root crops                          GI Only if HNV1 

Abandoned Arable Land GI Only if HNV1 

Abandoned Permanent Crops  GI Only if HNV1 

Abandoned pastures                 GI Only if HNV1 

Natural land2 GI 

Other Nature2                      GI 

Wetlands2 GI 

Water Bodies2 GI 

Urban green leisure2 GI 

1 HNV: from Paracchini et al., 2008, High Nature Value Farmland in Europe: An estimate of the 
distribution patterns based on land cover and biodiversity data. 

2 These land use classes were not simulated in the reference scenario (they are kept constant 
over time). 

As pointed out in the Territorial Agenda of the European Union 2020 (European 

Commission, 2011), changes in land use such as urbanization, agricultural intensification, 

infrastructure development, etc., threaten cultural assets and landscapes. They may lead 

to a decrease in ecological value and environmental quality that are crucial to human well-

being and to economic prospects which offer unique development opportunities.  

GI networks, integrating ecological systems, aim to promote ecosystem health and 

resilience, contribute to biodiversity conservation and provide other benefits to human 

populations. They contribute to the maintenance and enhancement of ecosystem services 

and to long term sustainable development. Therefore, quantification of the availability of 

GI (i.e. the share of total area and hectares of GI per capita) is important, especially in 

areas where sprawl of artificial land uses may compete with natural and semi-natural land 

uses, such as in Functional Urban Areas (FUA). The availability of GI in urban areas is 

indicative of the environmental quality, which should be protected and developed 

according to the Territorial Agenda of the European Union 2020. 
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3.10.1 Share of green infrastructure 

GI availability, expressed as the share of GI, is quite heterogeneous throughout the EU-

28 territory. At country level, it varies from almost 95% in Finland to 12% in Malta (Figure 

72). On average, FUA have a lower share of green infrastructure (green bullets in the 

figure, 100 means FUA average equal to country average) than the whole territory, with 

the exception of Cyprus, Denmark, Malta, Lithuania and the Netherlands. The largest 

difference in the share of green infrastructure among FUA and the country as a whole can 

be seen in Belgium and the United Kingdom, where GI in FUA represents less than 60% 

of the country averages. 

 

Figure 72: Share of Green Infrastructure inside and outside FUA per member states. 

The average share of GI for all municipalities (LAU2 level) is almost 60%, while this 

average decreases to 45% when only the municipalities within FUA are considered (Figure 

72). The majority of capitals show a low (< 40%) or very low (<20%), GI with the 

exception of cities such as Helsinki, Zagreb and Bilbao. 

Across most of the EU-28 (Figure 73), the largest share of green infrastructure is found in 

rural areas. Notable exceptions are the Netherlands and Malta where suburban 

municipalities present the largest share of GI, as well as the United Kingdom where GI 

seems almost uniformly distributed across cities, towns and suburbs and rural areas. 

 

Figure 73. Distribution of Green Infrastructure share per degree of urbanization. 
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Figure 74 indicates that a general pattern of low share of GI in FUA with large built-up 

areas are visible in Belgium and the United Kingdom but also in some regions dominated 

by agricultural areas like south of Italy. FUA in Sweden, Finland, Spain and Croatia have 

higher share of GI.   

 

Figure 74. Share of Green Infrastructure in 2010 by Functional Urban Areas (FUA). 
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3.10.2 Green infrastructure per capita 

The availability of GI per capita, is on average 0.79 ha per person in FUA. This value is 

likely to decrease in the future (Figure 75), particularly in areas where natural and semi-

natural areas are competing with other land uses such as urban, industrial and 

commercial. Figure 75 shows a general trend towards a decrease in GI per capita in FUA 

across most of the EU-28 (by approximatively –13%) between 2010 and 2050. 

 

Figure 75. Changes in GI per capita between 2010 and 2050 in Functional Urban Areas 

(FUA). 

On average, the countries where FUA are expected to undergo the greatest decrease in 

GI per capita are Luxembourg (-36%), Ireland (-36%), Sweden (-29%) and Finland (-

26%). On the other hand, FUA in Hungary (+25%), Bulgaria (+12%), Germany (+10%) 

and Malta (+9%) are expected to show increases in GI per capita between 2010 and 2050. 

This is most likely associated with expected population decreases in these countries rather 

than an increase in the amount of green infrastructure. 

3.10.3 Changes in green infrastructure per capita in selected European 

cities 

Figure 76 illustrates the current state and projected changes in GI per capita as a function 

of its distance to the city centre for 6 selected cities. For 2010, we observe a relatively 

similar profile between cities, with low levels of GI per capita near to the city centre, 

rapidly increasing (exponential) values between 5 to 10 km, and plateauing values after 

15 to 25 km.  

Stockholm presents the highest GI per capita values in the city centre while Barcelona 

presents the lowest values (principally because of its lack of green areas and high 

population density). Palermo also displays very low values of GI per capita near the city 

centre, but this value sharply increases between 2 and 15 km distance to reach the highest 

values among the selected cities. 

Projected changes between 2010 and 2050 in per capita GI indicate little changes across 

all cities between 1 and 10 km from city centre. Green infrastructure per capita is expected 

to decrease in Vienna and Stockholm between 15 and 30 km and increase in Palermo and 

Bucharest after 25 km distance from the centre. 
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Figure 76: Green infrastructure (person/ha) profiles for selected cities in 2010 (above) 

and the amount of change between 2010 and 2050 (below). 
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3.11 Urban flood risk 

3.11.1 River flooding in Europe 

River flooding is a frequently-occurring natural hazard in Europe. It occurs when rivers 

overflow their banks and inundate the surrounding area, with an accumulation of water 

especially in down-stream, flatter areas; meaning that often cities are at high risk of 

flooding. The impact of flooding on human activity are especially high in urban areas due 

to the density of the population and physical assets/infrastructure.  

We used the flood impact indicator (Lung et al., 2013) to assess the current impacts of 

flooding in Europe's major cities. The methodology takes into account both the exposure 

of the city to river flooding, and the associated sensitivity in terms of potential human and 

physical losses resulting from a flood event.  

3.11.2 Quantifying urban flood risk 

The risk associated with urban flooding depends firstly on the natural exposure of the city 

to flooding. This can be measured based on past and predicted flood extent and depth. 

The EU flood simulation model LISFLOOD (Van Der Knijff et al., 2010) was used to derive 

the inundation extent and water depth of a 100-year return level of river discharge (Feyen 

et al., 2012; Alfieri et al., 2013). The model uses current and projected climate conditions 

in conjunction with a Pan-European hydrological model to characterize future flood events. 

The map of flood extent and depth was used to derive parameters describing the exposure 

to flooding (flood area and mean depth for each city). 

The sensitivity of the city to flooding is reflected by the potential physical and human 

losses. In order to quantify these parameters at the urban scale we estimated the 

population density and area of physical assets affected by flooding according to the flood 

extent map. The population potentially affected by flooding was computed using a detailed 

population density map (Batista e Silva et al., 2012); the acreage of commercial and 

industrial areas was extracted from the current and projected land use maps of LUISA. 

The parameters used are summarised in Table 8. 

Table 8: Parameters taken into consideration when computing the river flood impact 

indicator.  

Component Description Temporal coverage Data source 

Flood 
exposure  

Flooded area [%] 1961–1990; 2040-
2070 

LISFLOOD (Feyen et al., 
2012; Alfieri et al., 2013) 

 Mean water depth of 

flooded area [m] 

1961–1990; 2040-

2070 

LISFLOOD (Feyen et al., 

2012; Alfieri et al., 2013) 

Flood 
sensitivity  

Population density within 
flooded areas 

2010; 2050 Population density map 
(Batista e Silva et al., 2013) 

 Commercial & industrial 

areas flooded [%] 

2010; 2050 CORINE refined (Batista e 

Silva et al., 2012) & LUISA 

The parameters calculated were combined to give a composite indicator taking into 

account both the exposure and sensitivity of the city. This final index was calculated for 

the years 2010 and 2050 at both Functional Urban Area (FUA) and municipality level 

(LAU2). The 2010 calculations used land use and population density data for 2010 and 

flood extent based on the current climate (1961-1990), while projected land use and 

population density maps were used for the 2050 index, along with a flood extent map 

calculated based on an average of 5 climate scenarios for the period 2040-2070. 
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3.11.3 Urban flood risk in 2010 

The urban flood risk index was calculated for the EU-28 countries for both the Functional 

Urban Areas (FUA,), and municipality level (LAU2). The results are highly variable at the 

FUA level (Figure 77), with especially high flood risk in central Europe, Romania and Spain. 

Also notable is that cities with larger populations tend to have a higher flood risk, except 

in the Scandinavian countries, northern UK, Ireland and Greece. 

 

Figure 77. Urban flood risk by FUA for 2010. 
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The average index per country is summarized in Figure 78 by degree of urbanization 

(based on the LAU2 calculations). With the exception of Hungary and Sweden, all countries 

have the highest relative flood risk in areas designated as cities, followed by towns and 

suburbs, and lowest in rural areas. The highest flood risk for cities is found in Latvia, 

Portugal, and Lithuania, with the lowest flood risk for cities in Sweden. Whilst the exposure 

of cities to flood risk is highly dependent on their geographical location (ie. proximity to 

major waterways and topography), the sensitivity to flooding will logically tend to be 

higher due to the dense population and abundance of commercial and industrial areas 

potentially at risk. 

 

Figure 78. The average urban flood risk per country per degree of urbanization for 2010. 

3.11.4 Projected change in urban flood risk 2010 - 2050 

The urban flood risk index was projected to the year 2050 for the EU28 countries for both 

the Functional Urban Areas (FUA), and municipality level (LAU2). Figure 79 gives the 

resulting change in the index at FUA level between 2010 and 2050. Although most urban 

areas maintain the same index score, several areas show improvements, especially in 

Germany and Poland. Other urban areas showed increased flood risk over time, notably 

those in the UK, France, northern Italy, eastern Poland and Belgium. 

3.11.5 Summary of the findings 

The results show a high variability in flood risk both spatially across Europe, but also 

according to the size of the urban agglomeration. Larger cities tend to have higher average 

flood risk, especially due to the higher sensitivity in terms of potential human and physical 

losses.  

The overall index shows some notable changes over time in urban areas, due both to 

climate variability (resulting in a varied predicted flood extent), and to the growth or de-

population of the agglomeration. Although flood risk increases in numerous urban zones 

in the UK, France, Poland, Belgium, the Netherlands and Romania, there are also several 

improvements seen in central and eastern Europe. 

It should also be noted that regions such as the Netherlands, Germany, and Northern 

France may experience high flood risk, but also have the highest protection levels against 

flooding. The indicator has also been computed taking into account only river flooding, and 

therefore is not fully representative for the flood hazard experienced in cities along the 

coastlines, which may in addition experience coastal flooding. 
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Figure 79. The change in the urban flood risk between 2010 and 2050 by FUA. 
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4. The Present and future of European cities: summary of the 

main findings 

In the previous sections, the results of urban indicators were presented in detail at the EU 

level for all relevant thematic fields. Territorial and temporal dimensions of future changes 

were given; regional differences and trends are elaborated upon, and characteristics of 

urban and rural areas were highlighted. Finally, in this section, the dominant patterns 

and/or most likely changes for each thematic field are summarised: 

Degree of urbanization: 

These results demonstrate that, although in the EU-28 no considerable shifts in degree of 

urbanization are forecasted at the LAU2 level, the population is increasing mainly in 

densely populated areas. There is, however, not a clear spatial pattern of urbanization. 

Within each country, it is possible to find both regions that are becoming more densely 

populated and regions where the opposite phenomenon takes place. 

Urbanization: 

As of 2010, the proportion of the population living in cities, towns and suburbs within the 

European Union was higher than the rest of the world with almost 80%. The forecasts 

imply that in the next twenty years, the urban proportion will continue to increase as in 

the past few decades; it will then slow down and reach its limit at 88% by 2050. Since 

most of the Functional Urban Areas (FUA) have already reached their thresholds, with 

90%-95% urban proportion levels, smaller cities/towns and also rural areas will be the 

main subject of urbanization in the future. 

Land use and urban development: 

The annual land take between 2010 and 2050 at EU-28 level is approximately 1.6 

m2/capita/year. It is less than 1 m2/capita/year in Bulgaria, Germany, Latvia, Croatia and 

Greece and more than 3m2/capita/year in Ireland, Finland, Belgium, Cyprus, Luxemburg 

and Sweden. The annual land take per inhabitant is much higher in rural areas with 3.08 

m2/capita/year than the cities with 0.80 m2/capita/year and the towns and suburbs with 

1.93 m2/capita/year. With a focused analysis, the land take tend to start peaking after a 

5 km distance from the city centre, which means the land available for built-up within city 

centres has already been developed in the past, and that the majority of land take 

therefore will occur first in suburbs and then in rural areas. 

As of 2010, artificial areas per inhabitant in EU-28 were 498 m2 and become 539 m2 in 

2050 with an 8% increase. Croatia, Romania, Bulgaria, Latvia, Slovakia, Ireland and 

Poland record the greatest amount of change between 2010 and 2050 in terms of artificial 

areas per inhabitant. Considering only the FUA, in 2010 artificial areas per inhabitant are 

373 m2 and become 388 m2 in 2050 with a 4% increase. This is only half of the average 

increase rate for the whole EU-28, and means that less land is consumed per inhabitant 

in FUA. Finally, in general, the local administrative units (LAU2) classified as cities use 

land more efficiently (228 m2/capita), than the towns and suburbs (501 m2/capita) and 

the rural areas (1084 m2/capita). 

Population growth: 

In 2010, 65% of the EU population were living in Functional Urban Areas (FUA). This 

number is expected to reach 70% by 2050. While the overall EU population is expected to 

grow by 4.6%, most growth will occur in FUA. The rest of the European territory (including 

many FUA in central Europe) is expected to lose population. Within FUA, more people will 

be living in municipalities classified as cities, towns and suburbs.  
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Population weighted density: 

In 2010, the average population weighted density in FUA across all EU countries was 

approximately 95 persons/ha. By 2050, most countries will see decreases in population 

weighted density in cities and rural areas and increases in suburbs and towns if the FUA 

are taken into consideration. 

Nature based recreation opportunities: 

The indicator allows the spatially explicit assessment of: 1) the capacity of ecosystems to 

provide recreation opportunities, and 2) the demand for this important service. The rural 

zones in Europe provides higher levels of opportunities, but, urban areas (cities + towns 

and suburbs) generate a high amount of potential short trips to recreational sites of low 

level that we consider in high demand. The global trend in opportunities for nature based 

recreation provision is likely to decrease in the future with an average of -30% by 2050. 

Due to the spatial trends of changes that mainly depend on transition from natural to 

artificial land uses. 

Air quality: 

The Land Use Regression model (LUR) and source receptor methods were used to derive 

PM10 and NO2 and PM2.5 concentrations respectively in FUA throughout Europe, allowing 

the quantification of their impact on health. Results of concentrations for specific pollutants 

show high variability in FUA between and within countries. LUR methods also allow the 

prediction of future air quality patterns and the results show that, in general terms, 

concentrations will slightly increase between 2010 and 2050 if only land use related 

parameters (no specific air quality measures) are considered. If suitable measures are not 

taken, those slight increases can be further augmented by increased emissions from, for 

example, traffic and industries. 

Accessibility: 

Potential accessibility values are higher in particular in the urban areas of north-western 

Europe. Despite substantial investment in Europe’s new member states, accessibility is 

expected to increase in particular in Western Europe, Great Britain and Ireland. Apart from 

this, it is obvious that urban form has a considerable impact on average travelled distances 

and thus potentially on the energy dependence of transport within cities. 

Green infrastructure: 

Green infrastructure is mainly found at the periphery of European urban areas. Green 

infrastructure per person is generally low or very low in most European cities at the 

exception of cities such as Helsinki, Zagreb and Bilbao. Green infrastructure per capita 

shows a general trend towards a decrease in FUA across the EU-28 (by approximatively – 

13%) between 2010 and 2050. This decrease is expected to be particularly significant 

where natural and semi-natural areas are competing with other land uses such as urban, 

industrial and commercial. 

Urban flood risk: 

Larger cities tend to have higher average flood risk, especially due to the higher sensitivity 

in terms of potential human and physical losses. The overall index shows some notable 

changes over time in urban areas, due both to climate variability (resulting in a varied 

predicted flood extent), and to the growth or de-population of the agglomeration. Although 

flood risk increases in numerous urban zones in the United Kingdom, France, Poland, 

Belgium, the Netherlands and Romania, there are also several improvements seen in 

central and eastern Europe. It should also be noted that regions such as the Netherlands, 

Germany, and Northern France may experience high flood risk, but also have the highest 

protection levels against flooding. 
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5. Conclusion 

Given its approach developed for territorial modelling, and its high resolution land use and 

population data outputs, LUISA is an efficient method to measure the performance of 

European cities and to explore key spatial parameters that shape urban areas. Previous 

territorial impact assessment practices had difficulties in measuring the EU-wide 

performance of cities and urban areas against specific policies. Europe-wide spatial models 

are generally designed to produce projections at the country level and/or for NUTS2 and 

NUTS3 regions. Moreover, other more fine-resolution spatial analyses cover only a limited 

number of cities or urban regions, implying intrinsic difficulties in making comparisons 

between different regions and in monitoring EU-wide impacts of urban policies.  

At this point, the approach developed by LUISA creates an important opportunity to fill 

this gap in territorial impact assessment practice. The high resolution land use, population 

and ‘land function’ data output by LUISA provide useful complementary indicators to 

measure the performance of European cities and to explore the key spatial parameters 

that shape urban areas in Europe.  

This study, as a recent exercise of the LUISA modelling platform, investigated the present 

and future state of European cities and regions. It applied several urban indicators that 

analyse the main dynamics of urbanization and urban development through changes in 

land use / land cover, population growth, recreation potential, green infrastructure, air 

quality, flood risk and accessibility in Europe.  

The results were demonstrated in detail for a number of thematic fields at the spatial 

extent of the entire EU. Territorial and temporal dimensions of future changes were 

explored; regional differences and trends are elaborated upon, and characteristics of urban 

and rural areas are highlighted. Finally, the dominant pattern and/or most likely change 

in each thematic field were summarised in an overview.  

The results achieved within this report indicates that the patterns and trends seen are 

spatially different among countries and among regions which demonstrates the added 

value of territorial modelling for the assessment of policies related to urban areas. To allow 

full exploitation of these outcomes by urban policy, next efforts should focus on 

establishing clear links between this assessment and policy implementations for Europe’s 

cities. 

The analysis herein presented is part of a wider initiative of DG JRC and DG REGIO aiming 

to improve the management of knowledge and sharing of information related to territorial 

policies, such as those concerning urban development. In this framework, the work will be 

further developed, covering the following main elements: 

 Development of the European Urban Data Platform, providing a single access point 

for data and indicators on the status and trends of European urban areas; 

 Updates of the LUISA configuration, to account for new socio-economic projections; 

 Support to the development of the EU Urban Agenda and related initiatives; 

 Provision of evidence-based support for the evaluation of territorial policies in 

particular to proof the role of cities in the implementation of EU priorities. 
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