12 research outputs found

    Efficacy of smoking prevention program 'Smoke-free Kids': study protocol of a randomized controlled trial

    Get PDF
    Contains fulltext : 77005.pdf (publisher's version ) (Open Access)Background - A strong increase in smoking is noted especially among adolescents. In the Netherlands, about 5% of all 10-year olds, 25% of all 13-year olds and 62% of all 17-year olds report ever smoking. In the U.S., an intervention program called 'Smoke-free Kids' was developed to prevent children from smoking. The present study aims to assess the effects of this home-based smoking prevention program in the Netherlands. Methods - A randomized controlled trial is conducted among 9 to 11-year old children of primary schools. Participants are randomly assigned to the intervention and control conditions. The intervention program consists of five printed activity modules designed to improve parenting skills specific to smoking prevention and parent-child communication regarding smoking. These modules will include additional sheets with communication tips. The modules for the control condition will include solely information on smoking and tobacco use. Initiation of cigarette smoking (first instance of puffing on a lighted cigarette), susceptibility to cigarette smoking, smoking-related cognitions, and anti-smoking socialization will be the outcome measures. To collect the data, telephone interviews with mothers as well as with their child will be conducted at baseline. Only the children will be examined at post-intervention follow-ups (6, 12, 24, and 36 months after the baseline). Discussion - This study protocol describes the design of a randomized controlled trial that will evaluate the effectiveness of a home-based smoking prevention program. We expect that a significantly lower number of children will start smoking in the intervention condition compared to control condition as a direct result of this intervention. If the program is effective, it is applicable in daily live, which will facilitate implementation of the prevention protocol. Trial registration: Netherlands Trial Register NTR146510 p

    Compulsive Internet Use Among Adolescents: Bidirectional Parent–Child Relationships

    Get PDF
    Although parents experience growing concerns about their children’s excessive internet use, little is known about the role parents can play to prevent their children from developing Compulsive Internet Use (CIU). The present study addresses associations between internet-specific parenting practices and CIU among adolescents, as well as the bidirectionality of these associations. Two studies were conducted: a cross-sectional study using a representative sample of 4,483 Dutch students and a longitudinal study using a self-selected sample of 510 Dutch adolescents. Results suggest that qualitatively good communication regarding internet use is a promising tool for parents to prevent their teenage children from developing CIU. Besides, parental reactions to excessive internet use and parental rules regarding the content of internet use may help prevent CIU. Strict rules about time of internet use, however, may promote compulsive tendencies. Finally, one opposite link was found whereby CIU predicted a decrease in frequency of parental communication regarding internet use

    Continuum percolation of polydisperse nanofillers

    Get PDF
    We show that a generalized connectedness percolation theory can be made tractable for a large class of anisotropic particle mixtures that potentially contain an infinite number of components. By applying our methodology to carbon-nanotube composites, we explain the huge variations found in the onset of electrical conduction in terms of a percolation threshold that turns out to be sensitive to polydispersity in particle length and diameter. The theory also allows us to model the influence of the presence of nonconductive species in the mixture, such as is the case for single-walled nanotubes, showing that these raise the percolation threshold proportionally to their abundance

    Effect of physical interventions on physical performance and physical activity in older patients during hospitalization: a systematic review

    Get PDF
    BACKGROUND: To counteract decline in physical performance and physical activity in older patients during hospitalization, multiple physical interventions were developed. However, it is unknown whether these are effective in this particular population. This systematic review aimed to identify the effect of physical interventions on physical performance and physical activity in older patients during hospitalization. METHODS: The systematic search included PubMed, EMBASE, Cinahl, the Trials database of The Cochrane Library and SPORTdiscus from inception to 22 November 2017. Studies were included if the mean age of the patient cohort was 65 years and older and the effect of physical interventions on physical performance or physical activity was evaluated during hospitalization. RESULTS: Fifteen randomized controlled trials met the inclusion criteria. Overall, the effect of physical interventions on physical performance was inconsistent. Patient tailored interventions, i.e. continuously adapted to the capabilities of the patient were not found to be superior over interventions that were not. Physical activity as outcome measure was not addressed. Reporting of intensity of the interventions and adherence were frequently lacking. CONCLUSIONS: Evidence for the effect of physical interventions on physical performance in older patients during hospitalization was found uncertain. Further research on the efficacy of the intervention is needed, comparing types of intervention with detailed reporting of frequency, intensity and duration

    Pathophysiological mechanisms explaining poor clinical outcome of older cancer patients with low skeletal muscle mass

    Get PDF
    Low skeletal muscle mass is highly prevalent in older cancer patients and affects 5% to 89% depending on the type and stage of cancer. Low skeletal muscle mass is associated with poor clinical outcomes such as post-operative complications, chemotherapy toxicity and mortality in older cancer patients. Little is known about the mediating pathophysiological mechanisms. In this review, we summarize proposed pathophysiological mechanisms underlying the association between low skeletal muscle mass and poor clinical outcomes in older cancer patients including a) systemic inflammation; b) insulin-dependent glucose handling; c) mitochondrial function; d) protein status and; e) pharmacokinetics of anticancer drugs. The mechanisms of altered myokine balance negatively affecting the innate and adaptive immune system, and altered pharmacokinetics of anticancer drugs leading to a relative overdosage of anticancer drugs are best-substantiated. The effects of glucose intolerance and circulating mitochondrial DNA as a consequence of low skeletal muscle mass are topics of interest for future research. Restoring myokine balance through physical exercise, exercise mimetics, neuro-muscular activation and adapting anticancer drug dosing on skeletal muscle mass could be targeted approaches to improve clinical outcomes in older cancer patients with low skeletal muscle mass

    Controlling electrical percolation in multicomponent carbon nanotube dispersions

    No full text
    Carbon nanotube reinforced polymeric composites can have favourable electrical properties, which make them useful for applications such as flat-panel displays and photovoltaic devices. However, using aqueous dispersions to fabricate composites with specific physical properties requires that the processing of the nanotube dispersion be understood and controlled while in the liquid phase. Here, using a combination of experiment and theory, we study the electrical percolation of carbon nanotubes introduced into a polymer matrix, and show that the percolation threshold can be substantially lowered by adding small quantities of a conductive polymer latex. Mixing colloidal particles of different sizes and shapes (in this case, spherical latex particles and rod-like nanotubes) introduces competing length scales that can strongly influence the formation of the system-spanning networks that are needed to produce electrically conductive composites. Interplay between the different species in the dispersions leads to synergetic or antagonistic percolation, depending on the ease of charge transport between the various conductive components
    corecore