8 research outputs found

    Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet

    Get PDF
    Melting of the Greenland Ice Sheet is a leading cause of land-ice mass loss and cryosphere-attributed sea level rise. Blooms of pigmented glacier ice algae lower ice albedo and accelerate surface melting in the ice sheet’s southwest sector. Although glacier ice algae cause up to 13% of the surface melting in this region, the controls on bloom development remain poorly understood. Here we show a direct link between mineral phosphorus in surface ice and glacier ice algae biomass through the quantification of solid and fluid phase phosphorus reservoirs in surface habitats across the southwest ablation zone of the ice sheet. We demonstrate that nutrients from mineral dust likely drive glacier ice algal growth, and thereby identify mineral dust as a secondary control on ice sheet melting.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Emotional states detection approaches based on physiological signals for healthcare applications: A review

    No full text
    Mood disorders, anxiety, depression, and stress affect people’s quality of life and increase the vulnerability to diseases and infections. Depression, e.g., can carry undesirable consequences such as death. Hence, emotional states detection approaches using wearable technology are gaining interest in the last few years. Emerging wearable devices allow monitoring different physiological signals in order to extract useful information about people’s health status and provide feedback about their health condition. Wearable applications include e.g., patient monitoring, stress detection, fitness monitoring, wellness monitoring, and assisted living for elderly people, to name a few. This increased interests in wearable applications have allowed the development of new approaches to assist people in everyday activities and emergencies that can be incorporated into the smart city concept. Accurate emotional state detection approaches will allow an effective assistance, thus improving people’s quality of life and well-being. With these issues in mind, this chapter discusses existing emotional states’ approaches using machine and/or deep learning techniques, the most commonly used physiological signals in these approaches, existing physiological databases for emotion recognition, and highlights challenges and future research directions in this field. © Springer Nature Switzerland AG 2020

    Frequently asked questions about in vivo chlorophyll fluorescence: practical issues

    Get PDF
    The aim of this educational review is to provide practical information on the hardware, methodology, and the hands on application of chlorophyll (Chl) a fluorescence technology. We present the paper in a question and answer format like frequently asked questions. Although nearly all information on the application of Chl a fluorescence can be found in the literature, it is not always easily accessible. This paper is primarily aimed at scientists who have some experience with the application of Chl a fluorescence but are still in the process of discovering what it all means and how it can be used. Topics discussed are (among other things) the kind of information that can be obtained using different fluorescence techniques, the interpretation of Chl a fluorescence signals, specific applications of these techniques, and practical advice on different subjects, such as on the length of dark adaptation before measurement of the Chl a fluorescence transient. The paper also provides the physiological background for some of the applied procedures. It also serves as a source of reference for experienced scientists

    Murine Models of Prostate Cancer

    No full text
    corecore