554 research outputs found

    The spectral variability of FSRQs

    Full text link
    The optical variability of 29 flat spectrum radio quasars in SDSS Stripe 82 region are investigated by using DR7 released multi-epoch data. All FSRQs show variations with overall amplitude ranging from 0.24 mag to 3.46 mag in different sources. About half of FSRQs show a bluer-when-brighter trend, which is commonly observed for blazars. However, only one source shows a redder-when-brighter trend, which implies it is rare in FSRQs. In this source, the thermal emission may likely be responsible for the spectral behavior.Comment: 4 pages, 1 figure, to be published in Journal of Astrophysics and Astronomy, as a proceeding paper of the conference "Multiwavelength Variability of Blazars", Guangzhou, China, September 22-24, 201

    Decitabine impact on the endocytosis regulator RhoA, the folate carriers RFC1 and FOLR1, and the glucose transporter GLUT4 in human tumors.

    Get PDF
    BackgroundIn 31 solid tumor patients treated with the demethylating agent decitabine, we performed tumor biopsies before and after the first cycle of decitabine and used immunohistochemistry (IHC) to assess whether decitabine increased expression of various membrane transporters. Resistance to chemotherapy may arise due to promoter methylation/downregulation of expression of transporters required for drug uptake, and decitabine can reverse resistance in vitro. The endocytosis regulator RhoA, the folate carriers FOLR1 and RFC1, and the glucose transporter GLUT4 were assessed.ResultsPre-decitabine RhoA was higher in patients who had received their last therapy >3 months previously than in patients with more recent prior therapy (P = 0.02), and varied inversely with global DNA methylation as assessed by LINE1 methylation (r = -0.58, P = 0.006). Tumor RhoA scores increased with decitabine (P = 0.03), and RFC1 also increased in patients with pre-decitabine scores ≀150 (P = 0.004). Change in LINE1 methylation with decitabine did not correlate significantly with change in IHC scores for any transporter assessed. We also assessed methylation of the RFC1 gene (alias SLC19A1). SLC19A1 methylation correlated with tumor LINE1 methylation (r = 0.45, P = 0.02). There was a small (statistically insignificant) decrease in SLC19A1 methylation with decitabine, and there was a trend towards change in SLC19A1 methylation with decitabine correlating with change in LINE1 methylation (r = 0.47, P <0.15). While SLC19A1 methylation did not correlate with RFC1 scores, there was a trend towards an inverse correlation between change in SLC19A1 methylation and change in RFC1 expression (r = -0.45, P = 0.19).ConclusionsIn conclusion, after decitabine administration, there was increased expression of some (but not other) transporters that may play a role in chemotherapy uptake. Larger patient numbers will be needed to define the extent to which this increased expression is associated with changes in DNA methylation

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    The molecular basis of beta-thalassemia intermedia in southern China: genotypic heterogeneity and phenotypic diversity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical syndrome of thalassemia intermedia (TI) results from the Ξ²-globin genotypes in combination with factors to produce fetal haemoglobin (HbF) and/or co-inheritance of Ξ±-thalassemia. However, very little is currently known of the molecular basis of Chinese TI patients.</p> <p>Methods</p> <p>We systematically analyzed and characterized Ξ²-globin genotypes, Ξ±-thalassemia determinants, and known primary genetic modifiers linked to the production of HbF and the aggravation of Ξ±/Ξ² imbalance in 117 Chinese TI patients. Genotype-phenotype correlations were analyzed based on retrospective clinical observations.</p> <p>Results</p> <p>A total of 117 TI patients were divided into two major groups, namely heterozygous Ξ²-thalassemia (n = 20) in which 14 were characterized as having a mild TI with the Hb levels of 68-95 g/L except for five co-inherited Ξ±Ξ±Ξ±<sup>anti-3.7 </sup>triplication and one carried a dominant mutation; and Ξ²-thalassemia homozygotes or compound heterozygotes for Ξ²-thalassemia and other Ξ²-globin defects in which the Ξ²<sup>+</sup>-thalassemia mutation was the most common (49/97), hemoglobin E (HbE) variants was second (27/97), and deletional hereditary persistence of fetal hemoglobin (HPFH) or δβ-thalassemia was third (11/97). Two novel mutations, Term CD+32(Aβ†’C) and Cap+39(Cβ†’T), have been detected.</p> <p>Conclusions</p> <p>Chinese TI patients showed considerable heterogeneity, both phenotypically and genotypically. The clinical outcomes of our TI patients were mostly explained by the genotypes linked to the Ξ²- and Ξ±-globin gene cluster. However, for a group of 14 patients (13 Ξ²<sup>0</sup>/Ξ²<sup>N </sup>and 1 Ξ²<sup>+</sup>/Ξ²<sup>N</sup>) with known heterozygous mutations of Ξ²-thalassemia and three with homozygous Ξ²-thalassemia (Ξ²<sup>0</sup>/Ξ²<sup>0</sup>), the existence of other causative genetic determinants is remaining to be molecularly defined.</p

    Increased CK5/CK8-Positive Intermediate Cells with Stromal Smooth Muscle Cell Atrophy in the Mice Lacking Prostate Epithelial Androgen Receptor

    Get PDF
    Results from tissue recombination experiments documented well that stromal androgen receptor (AR) plays essential roles in prostate development, but epithelial AR has little roles in prostate development. Using cell specific knockout AR strategy, we generated pes-ARKO mouse with knock out of AR only in the prostate epithelial cells and demonstrated that epithelial AR might also play important roles in the development of prostate gland. We found mice lacking the prostate epithelial AR have increased apoptosis in epithelial CK8-positive luminal cells and increased proliferation in epithelial CK5-positive basal cells. The consequences of these two contrasting results could then lead to the expansion of CK5/CK8-positive intermediate cells, accompanied by stromal atrophy and impaired ductal morphogenesis. Molecular mechanism dissection found AR target gene, TGF-Ξ²1, might play important roles in this epithelial AR-to-stromal morphogenesis modulation. Collectively, these results provided novel information relevant to epithelial AR functions in epithelial-stromal interactions during the development of normal prostate, and suggested AR could also function as suppressor in selective cells within prostate

    MGMT promoter hypermethylation and K-RAS, PTEN and TP53 mutations in tamoxifen-exposed and non-exposed endometrial cancer cases

    Get PDF
    background: Tamoxifen has anti-oestrogenic and anti-tumour activity in the breast, but is oestrogenic and carcinogenic in the endometrium. It can induce experimental tumours by both hormonal and DNA-damaging mechanisms, but its carcinogenic mode of action in human endometrium remains unclear. methods: We investigated whether an epigenetic mechanism, involving promoter hypermethylation of the gene for the DNA repair enzyme MGMT (O6-methylguanine DNA methyltransferase), was associated with K-RAS, TP53 and PTEN mutations in endometrial tumours from women treated with tamoxifen (TAM, n=30) or unexposed to the drug (EC, n=38). results: There were significant (PA, occurred in small numbers in both groups. TP53 mutations were of mainly A>G, C>T and indel modifications in both groups, but more frequent in TAM cases. PTEN mutations dominated in EC tumours and were of the type that has large impact on protein function, such as indel or nonsense mutations. These observations alongside the mutational spectrum in PTEN suggest that the malignancies arise from different backgrounds, hence pointing to an effect of tamoxifen. Both groups displayed MGMT promoter hypermethylation. This coincided with mutations more frequently in the TAM (78%) than in the EC (50%) group, even though there were significantly (P<0.05) fewer mutations and methylations in TAM cases. conclusions: Although the difference in coincidence did not reach significance with the current sample size, the findings suggest that epigenetic processes may play a role in the way tamoxifen induces endometrial cancer

    HNF4alpha Dysfunction as a Molecular Rational for Cyclosporine Induced Hypertension

    Get PDF
    Induction of tolerance against grafted organs is achieved by the immunosuppressive agent cyclosporine, a prominent member of the calcineurin inhibitors. Unfortunately, its lifetime use is associated with hypertension and nephrotoxicity. Several mechanism for cyclosporine induced hypertension have been proposed, i.e. activation of the sympathetic nervous system, endothelin-mediated systemic vasoconstriction, impaired vasodilatation secondary to reduction in prostaglandin and nitric oxide, altered cytosolic calcium translocation, and activation of the renin-angiotensin system (RAS). In this regard the molecular basis for undue RAS activation and an increased signaling of the vasoactive oligopeptide angiotensin II (AngII) remain elusive. Notably, angiotensinogen (AGT) is the precursor of AngII and transcriptional regulation of AGT is controlled by the hepatic nuclear factor HNF4alpha. To better understand the molecular events associated with cyclosporine induced hypertension, we investigated the effect of cyclosporine on HNF4alpha expression and activity and searched for novel HNF4alpha target genes among members of the RAS cascade. Using bioinformatic algorithm and EMSA bandshift assays we identified angiotensin II receptor type 1 (AGTR1), angiotensin I converting enzyme (ACE), and angiotensin I converting enzyme 2 (ACE2) as genes targeted by HNF4alpha. Notably, cyclosporine represses HNF4alpha gene and protein expression and its DNA-binding activity at consensus sequences to AGT, AGTR1, ACE, and ACE2. Consequently, the gene expression of AGT, AGTR1, and ACE2 was significantly reduced as evidenced by quantitative real-time RT-PCR. While RAS is composed of a sophisticated interplay between multiple factors we propose a decrease of ACE2 to enforce AngII signaling via AGTR1 to ultimately result in vasoconstriction and hypertension. Taken collectively we demonstrate cyclosporine to repress HNF4alpha activity through calcineurin inhibitor mediated inhibition of nuclear factor of activation of T-cells (NFAT) which in turn represses HNF4alpha that leads to a disturbed balance of RAS

    Reactive Oxygen Species Suppress Cardiac NaV1.5 Expression through Foxo1

    Get PDF
    NaV1.5 is a cardiac voltage-gated Na+ channel Ξ±subunit and is encoded by the SCN5a gene. The activity of this channel determines cardiac depolarization and electrical conduction. Channel defects, including mutations and decrease of channel protein levels, have been linked to the development of cardiac arrhythmias. The molecular mechanisms underlying the regulation of NaV1.5 expression are largely unknown. Forkhead box O (Foxo) proteins are transcriptional factors that bind the consensus DNA sequences in their target gene promoters and regulate the expression of these genes. Comparative analysis revealed conserved DNA sequences, 5β€²-CAAAACA-3β€² (insulin responsive element, IRE), in rat, mouse and human SCN5a promoters with the latter two containing two overlapping Foxo protein binding IREs, 5β€²-CAAAACAAAACA-3β€². This finding led us to hypothesize that Foxo1 regulates NaV1.5 expression by directly binding the SCN5a promoter and affecting its transcriptional activity. In the present study, we determined whether Foxo1 regulates NaV1.5 expression at the transcriptional level and also defined the role of Foxo1 in hydrogen peroxide (H2O2)-mediated NaV1.5 suppression in HL-1 cardiomyocytes using chromatin immunoprecipitation (ChIP), constitutively nuclear Foxo1 expression, and RNAi Foxo1 knockdown as well as whole cell voltage-clamp recordings. ChIP with anti-Foxo1 antibody and follow-up semi-quantitative PCR with primers flanking Foxo1 binding sites in the proximal SCN5a promoter region clearly demonstrated enrichment of DNA, confirming Foxo1 recruitment to this consensus sequence. Foxo1 mutant (T24A/S319A-GFP, Foxo1-AA-GFP) was retained in nuclei, leading to a decrease of NaV1.5 expression and Na+ current, while silencing of Foxo1 expression by RNAi resulted in the augmentation of NaV1.5 expression. H2O2 significantly reduced NaV1.5 expression by promoting Foxo1 nuclear localization and this reduction was prevented by RNAi silencing Foxo1 expression. These studies indicate that Foxo1 negatively regulates NaV1.5 expression in cardiomyocytes and reactive oxygen species suppress NaV1.5 expression through Foxo1
    • …
    corecore