74 research outputs found

    Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments

    Full text link
    In the current galaxy formation scenarios, two physical phenomena are invoked to build disk galaxies: hierarchical mergers and more quiescent external gas accretion, coming from intergalactic filaments. Although both are thought to play a role, their relative importance is not known precisely. Here we consider the constraints on these scenarios brought by the observation-deduced star formation history on the one hand, and observed dynamics of galaxies on the other hand: the high frequency of bars and spirals, the high frequency of perturbations such as lopsidedness, warps, or polar rings. All these observations are not easily reproduced in simulations without important gas accretion. N-body simulations taking into account the mass exchange between stars and gas through star formation and feedback, can reproduce the data, only if galaxies double their mass in about 10 Gyr through gas accretion. Warped and polar ring systems are good tracers of this accretion, which occurs from cold gas which has not been virialised in the system's potential. The relative importance of these phenomena are compared between the field and rich clusters. The respective role of mergers and gas accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed. D. Block et al., Kluwe

    Differential glucocorticoid metabolism in patients with persistent versus resolving inflammatory arthritis

    Get PDF
    Introduction: Impairment in the ability of the inflamed synovium to generate cortisol has been proposed to be a factor in the persistence and severity of inflammatory arthritis. In the inflamed synovium, cortisol is generated from cortisone by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme. The objective of this study was to determine the role of endogenous glucocorticoid metabolism in the development of persistent inflammatory arthritis. Methods: Urine samples were collected from patients with early arthritis (symptoms ≤12 weeks duration) whose final diagnostic outcomes were established after clinical follow-up and from patients with established rheumatoid arthritis (RA). All patients were free of disease-modifying anti-rheumatic drugs at the time of sample collection. Systemic measures of glucocorticoid metabolism were assessed in the urine samples by gas chromatography/mass spectrometry. Clinical data including CRP and ESR were also collected at baseline. Results: Systemic measures of 11β-HSD1 activity were significantly higher in patients with early arthritis whose disease went on to persist, and also in the subgroup of patients with persistent disease who developed RA, when compared with patients whose synovitis resolved over time. We observed a significant positive correlation between systemic 11β-HSD1 activity and ESR/CRP in patients with established RA but not in any of the early arthritis patients group. Conclusions: The present study demonstrates that patients with a new onset of synovitis whose disease subsequently resolved had significantly lower levels of systemic 11β-HSD1 activity when compared with patients whose synovitis developed into RA or other forms of persistent arthritis. Low absolute levels of 11β-HSD1 activity do not therefore appear to be a major contributor to the development of RA and it is possible that a high total body 11β-HSD1 activity during early arthritis may reduce the probability of disease resolution

    BMP-2/6 Heterodimer Is More Effective than BMP-2 or BMP-6 Homodimers as Inductor of Differentiation of Human Embryonic Stem Cells

    Get PDF
    Bone Morphogenetic Protein (BMP) signaling pathways are involved in differentiation of stem cells into diverse cell types, and thus BMPs can be used as main guidance molecules for in vitro differentiation of human stem cells.We have analyzed the ability for inducing differentiation of the heterodimer BMP-2/BMP-6 (BMP-2/6) compared to the homodimers BMP-2 or BMP-6, using human embryonic stem (hES) cells H9 as model system. When incubated in a medium with high concentration of basic fibroblastic growth factor (FGF2), 100 ng/ml of human recombinant BMPs induced morphological changes and differentiation of hES cells in 24 to 48 hours. After 5 days, expression of differentiation markers was induced and quantified by quantitative PCR (qPCR) and flow cytometry. BMP-2/6 exhibited stronger activity for the induction of the expression of trophectodermal (CDX2) and endodermal (SOX17, GATA4, AFP) markers than BMP-2 or BMP-6 homodimers. BMP-2/6 also induced the expression of BMPR2 gene more effectively than BMP-2 or BMP-6 when used at the same concentration and time. Moreover, the percentage of cells expressing the surface endodermal marker CXCR4 was also increased for the heterodimer when compared to both homodimers. BMP-2/6 was a more potent activator of Smad-dependent (SMAD1/5) and Smad-independent signaling (mitogen-activated protein kinases ERK and p38) than BMP-2 and BMP-6, and the activation of these pathways might play a role in its increased potency for inducing hES cell differentiation.Therefore, we conclude that BMP-2/6 is more potent than BMP-2 or BMP-6 for inducing differentiation of hES cells, and it can be used as a more powerful substitute of these BMPs in in vitro differentiation guidance

    Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii

    Get PDF
    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments

    Invasive behavior of ulcerative colitis-associated carcinoma is related to reduced expression of CD44 extracellular domain: comparison with sporadic colon carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To elucidate relations of invasion of ulcerative colitis (UC)-associated carcinoma with its prognosis, the characteristics of invasive fronts were analyzed in comparison with sporadic colonic carcinomas.</p> <p>Methods</p> <p>Prognoses of 15 cases of UC-associated colonic carcinoma were compared with those of sporadic colon carcinoma cases, after which 75 cases of sporadic invasive adenocarcinoma were collected. Tumor budding was examined histologically at invasive fronts using immunohistochemistry (IHC) of pancytokeratin. Expressions of beta-catenin with mutation analysis, CD44 extracellular domain, Zo-1, occludin, matrix matalloproteinase-7, laminin-5γ2, and sialyl Lewis X (Le<sup>X</sup>) were immunohistochemically evaluated.</p> <p>Results</p> <p>UC-associated carcinoma showed worse prognosis than sporadic colon carcinoma in all the cases, and exhibited a tendency to become more poorly differentiated when carcinoma invaded the submucosa or deeper layers than sporadic carcinoma. When the lesions were compared with sporadic carcinomas considering differentiation grade, reduced expression of CD44 extracellular domain in UC-associated carcinoma was apparent. Laminin-5γ2 and sialyl-Le<sup>X </sup>expression showed a lower tendency in UC-associated carcinomas than in their sporadic counterparts. There were no differences in the numbers of tumor budding foci between the two lesion types, with no apparent relation to nuclear beta-catenin levels in IHC.</p> <p>Conclusions</p> <p>UC-associated carcinoma showed poorer differentiation when the carcinoma invaded submucosa or deeper parts, which may influence the poorer prognosis. The invasive behavior of UC-associated carcinoma is more associated with CD44 cleavage than with basement membrane disruption or sialyl-Lewis-antigen alteration.</p

    Understanding the Sequence-Dependence of DNA Groove Dimensions: Implications for DNA Interactions

    Get PDF
    BACKGROUND: The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves. METHODOLOGY/PRINCIPAL FINDINGS: The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR (31)P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The (31)P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties. CONCLUSIONS/SIGNIFICANCE: The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions

    The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    Get PDF
    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully assessed when planning population genetic studies of cetaceans

    Global dataset of soil organic carbon in tidal marshes.

    Get PDF
    Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies

    Esterase-D and chromosome patterns in Central Amazon piranha (Serrasalmus rhombeus Linnaeus, 1766) from Lake Catalão

    Get PDF
    This study presents additional genetic data on piranha (Serrasalmus rhombeus Linnaeus, 1766) complex previously diagnosed due to the presence of distinct cytotypes 2n = 58 and 2n = 60. Three esterase-D enzyme loci (Est-D1, Est-D2 and Est-D3) were examined and complemented with chromosomal data from 66 piranha specimens collected from Lake Catalão. For all specimens the Est-D1 and Est-D2 loci were monomorphic. In contrast, the Est-D3 locus was polymorphic with genotypes and alleles being differentially distributed in the previously described cytotypes and served as the basis for detecting a new cytotype (2n = 60 B). In cytotype 2n = 58 the Est-D3 locus was also polymorphic and presented Mendelian allelic segregation with four genotypes (Est-D311, Est-D312, Est-D322 and Est-D333) out of six theoretically possible genotypes, presumably encoded by alleles Est-D31 (frequency = 0.237), EsT-D32 (0.710) and Est-D33 (0.053). A Chi-squared (χ2) test for Hardy-Weinberg equilibrium was applied to the Est-D3locus and revealed a genetic unbalance in cytotype 2n = 58, indicating the probable existence in the surveyed area of different stocks for that karyotypic structure. A silent null allele (Est-D30 with a high frequency (0.959) occurred exclusively in the 2n = 60 cytotype. On the other hand, the new cytotype 2n = 60 B described here for the first time was monomorphic for the presumably fixed Est-D33 allele. The data as a whole should contribute to the better understanding the rhombeus complex taxonomic status definitíon in the Central Amazon. © 2006 Sociedade Brasileira de Genética
    corecore