46 research outputs found
From staff-mix to skill-mix and beyond: towards a systemic approach to health workforce management
Throughout the world, countries are experiencing shortages of health care workers. Policy-makers and system managers have developed a range of methods and initiatives to optimise the available workforce and achieve the right number and mix of personnel needed to provide high-quality care. Our literature review found that such initiatives often focus more on staff types than on staff members' skills and the effective use of those skills. Our review describes evidence about the benefits and pitfalls of current approaches to human resources optimisation in health care. We conclude that in order to use human resources most effectively, health care organisations must consider a more systemic approach - one that accounts for factors beyond narrowly defined human resources management practices and includes organisational and institutional conditions
Resistance and resilience: Can the abrupt end of extreme drought reverse avifaunal collapse?
Aim: Climate change is expected to increase the frequency and intensity of extreme climatic events, such as severe droughts and intense rainfall periods. We explored how the avifauna of a highly modified region responded to a 13-year drought (the \u27Big Dry\u27), followed by a two-year period of substantially higher than average rainfall (the \u27Big Wet\u27). Location: Temperate woodlands in north central Victoria, Australia. Methods: We used two spatially extensive, long-term survey programmes, each of which was repeated three times: early and late in the Big Dry, and in the Big Wet. We compared species-specific changes in reporting rates between periods in both programmes to explore the resistance (the ability to persist during drought) and resilience (extent of recovery post-drought) of species to climate extremes. Results: There was a substantial decline in the reporting rates of 42-62% (depending on programme) of species between surveys conducted early and late in the Big Dry. In the Big Wet, there was some recovery, with 21-29% of species increasing substantially. However, more than half of species did not recover and 14-27% of species continued to decline in reporting rate compared with early on in the Big Dry. Species\u27 responses were not strongly related to ecological traits. Species resistance to the drought was inversely related to resilience in the Big Wet for 20-35% of the species, while 76-78% of species with low resistance showed an overall decline across the study period. Conclusions: As declines occurred largely irrespective of ecological traits, this suggests a widespread mechanism is responsible. Species that declined the most during the Big Dry did not necessarily show the greatest recoveries. In already much modified regions, climate extremes such as extended drought will induce on-going changes in the biota. © 2014 John Wiley & Sons Ltd
ფოტო ლევან ჩიქოვანის საოჯახო ალბომიდან
<div><p>Variation in immune defence in birds is often explained either by external factors such as food availability and disease pressure or by internal factors such as moult and reproductive effort. We explored these factors together in one sampling design by measuring immune activity over the time frame of the moulting period of Arctic-breeding barnacle geese (<i>Branta leucopsis</i>). We assessed baseline innate immunity by measuring levels of complement-mediated lysis and natural antibody-mediated agglutination together with total and differential leukocyte counts. Variation in immune activity during moult was strongly associated with calendar date and to a smaller degree with the growth stage of wing feathers. We suggest that the association with calendar date reflected temporal changes in the external environment. This environmental factor was further explored by comparing the immune activity of geese in the Arctic population with conspecifics in the temperate climate zone at comparable moult stages. In the Arctic environment, which has a lower expected disease load, geese exhibited significantly lower values of complement-mediated lysis, their blood contained fewer leukocytes, and levels of phagocytic cells and reactive leukocytes were relatively low. This suggests that lower baseline immune activity could be associated with lower disease pressure. We conclude that in our study species, external factors such as food availability and disease pressure have a greater effect on temporal variation of baseline immune activity than internal factors such as moult stage.</p></div