1,328 research outputs found

    Simulating Reionization: Character and Observability

    Get PDF
    In recent years there has been considerable progress in our understanding of the nature and properties of the reionization process. In particular, the numerical simulations of this epoch have made a qualitative leap forward, reaching sufficiently large scales to derive the characteristic scales of the reionization process and thus allowing for realistic observational predictions. Our group has recently performed the first such large-scale radiative transfer simulations of reionization, run on top of state-of-the-art simulations of early structure formation. This allowed us to make the first realistic observational predictions about the Epoch of Reionization based on detailed radiative transfer and structure formation simulations. We discuss the basic features of reionization derived from our simulations and some recent results on the observational implications for the high-redshift Ly-alpha sources.Comment: 3 pages, to appear in the Proceedings of First Stars III, Santa Fe, July 2007, AIP Conference Serie

    On the Thermoelectric Effect of Interface Imperfections

    Get PDF
    Ordinary thermocouples use the well-known Seebeck effect to measure the temperature at the junction of two different conductors. The electromotive force generated by the heat depends on the difference between the respective thermoelectric powers of the contacting metals and the junction temperature. Figure 1 shows the schematic diagram of the thermoelectric measurement as most often used in nondestructive materials characterization. One of the reference electrodes is heated by electrical means to a preset temperature of 100 – 300 °C, pretty much like the tip of a temperature-stabilized soldering iron, and connected to the inverting (−) input of the differential amplifier driving the indicator. The other electrode is left cold at essentially room temperature and connected to the non-inverting (+) input. The measurement is done quickly in a few seconds to assure (i) that the hot reference electrode is not cooled down perceivably by the specimen and (ii) that the rest of the specimen beyond the close vicinity of the contact point is not warmed up perceivably. Ideally, regardless of the temperature difference between the junctions, only thermocouples made of different materials, i.e., materials of different thermoelectric power, will generate thermoelectric signal. This unique feature makes the simple thermoelectric tester one of the most sensitive material discriminators used in nondestructive inspection

    On tree amplitudes with gluons coupled to gravitons

    Full text link
    In this paper, we study the tree amplitudes with gluons coupled to gravitons. We first study the relations among the mixed amplitudes. With BCFW on-shell recursion relation, we will show the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation hold for tree amplitudes with gluons coupled to gravitons. We then study the disk relation which expresses mixed amplitudes by pure gluon amplitudes. More specifically we will prove the disk relation for mixed amplitudes with gluons coupled to one graviton. Using the disk relation and the properties of pure gluon amplitudes, the color-order reversed relation, U(1)U(1)-decoupling relation and KK relation for mixed amplitudes can also be proved. Finally, we give some brief discussions on BCJ-like relation for mixed amplitudes.Comment: 33pages,no figur

    Right Hemisphere Partial Complex Seizures: Mania, Hallucinations, and Speech Disturbances During Ictal Events

    Full text link
    A patient with right hemisphere complex partial seizures exhibited extreme emotional lability resembling mania, neologisms resembling those found in fluent aphasia, and hallucinations during ictal periods. The electroencephalographic and clinical findings in this case suggest that cortical and subcortical structures of the right hemisphere may play a role in mediating the expression of language content. RÉSUMÉ Chez un patient prÉsentant des crises partielles complexes de l'hÉmisphÈre droit, nous avons observÉ pendant les crises une labilitÉÉmotionnelle Évoquant le diagnostic de manie. des nÉologismes ressemblant À ceux de l'aphasie de Wernicke et des hallucinations. Nos constatation EEG et cliniques suggÈrent que les structures corticales et sous-corticales de l'hÉmisphÈre droit peuvent jouer un rÔle dans la mÉdiation de l'expression du contenu linguistique. RESUMEN Un paciente con ataques parciales complejos originados en el hemisferio derecho mostrÓ una labilidad emocional extrema semejante a la mania, neologismos comparables a los que se encuentran en la afasia fluida y alucinaciones durante los perÍodos ictales. Los hallazgos clÍnicos y del EEG en este caso sugieren que estructuras corticales y subcorticales del hemisferio derecho pueden jugar un papel en la funciÓn del contenido del lenguaje expresivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66016/1/j.1528-1157.1988.tb05093.x.pd

    The Momentum Kernel of Gauge and Gravity Theories

    Get PDF
    We derive an explicit formula for factorizing an nn-point closed string amplitude into open string amplitudes. Our results are phrased in terms of a momentum kernel which in the limit of infinite string tension reduces to the corresponding field theory kernel. The same momentum kernel encodes the monodromy relations which lead to the minimal basis of color-ordered amplitudes in Yang-Mills theory. There are interesting consequences of the momentum kernel pertaining to soft limits of amplitudes. We also comment on surprising links between gravity and certain combinations of kinematic and color factors in gauge theory.Comment: 19 pages, 1 figur

    Monodromy--like Relations for Finite Loop Amplitudes

    Get PDF
    We investigate the existence of relations for finite one-loop amplitudes in Yang-Mills theory. Using a diagrammatic formalism and a remarkable connection between tree and loop level, we deduce sequences of amplitude relations for any number of external legs.Comment: 24 pages, 6 figures, v2 typos corrected, reference adde

    Multi-level evidence of an allelic hierarchy of USH2A variants in hearing, auditory processing and speech/language outcomes.

    Get PDF
    Language development builds upon a complex network of interacting subservient systems. It therefore follows that variations in, and subclinical disruptions of, these systems may have secondary effects on emergent language. In this paper, we consider the relationship between genetic variants, hearing, auditory processing and language development. We employ whole genome sequencing in a discovery family to target association and gene x environment interaction analyses in two large population cohorts; the Avon Longitudinal Study of Parents and Children (ALSPAC) and UK10K. These investigations indicate that USH2A variants are associated with altered low-frequency sound perception which, in turn, increases the risk of developmental language disorder. We further show that Ush2a heterozygote mice have low-level hearing impairments, persistent higher-order acoustic processing deficits and altered vocalizations. These findings provide new insights into the complexity of genetic mechanisms serving language development and disorders and the relationships between developmental auditory and neural systems

    Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents

    Get PDF
    Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease

    Multiplexed, High Density Electrophysiology with Nanofabricated Neural Probes

    Get PDF
    Extracellular electrode arrays can reveal the neuronal network correlates of behavior with single-cell, single-spike, and sub-millisecond resolution. However, implantable electrodes are inherently invasive, and efforts to scale up the number and density of recording sites must compromise on device size in order to connect the electrodes. Here, we report on silicon-based neural probes employing nanofabricated, high-density electrical leads. Furthermore, we address the challenge of reading out multichannel data with an application-specific integrated circuit (ASIC) performing signal amplification, band-pass filtering, and multiplexing functions. We demonstrate high spatial resolution extracellular measurements with a fully integrated, low noise 64-channel system weighing just 330 mg. The on-chip multiplexers make possible recordings with substantially fewer external wires than the number of input channels. By combining nanofabricated probes with ASICs we have implemented a system for performing large-scale, high-density electrophysiology in small, freely behaving animals that is both minimally invasive and highly scalable
    corecore