84 research outputs found

    A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignored in calibration calculations and in some cases impossible to characterize. A flexible statistical method that can account for uncertainty between plasmid and genomic DNA targets, replicate testing, and experiment-to-experiment variability is needed to estimate calibration curve parameters such as intercept and slope. Here we report the use of a Bayesian approach to generate calibration curves for the enumeration of target DNA from genomic DNA samples using absolute plasmid DNA standards.</p> <p>Results</p> <p>Instead of the two traditional methods (classical and inverse), a Monte Carlo Markov Chain (MCMC) estimation was used to generate single, master, and modified calibration curves. The mean and the percentiles of the posterior distribution were used as point and interval estimates of unknown parameters such as intercepts, slopes and DNA concentrations. The software WinBUGS was used to perform all simulations and to generate the posterior distributions of all the unknown parameters of interest.</p> <p>Conclusion</p> <p>The Bayesian approach defined in this study allowed for the estimation of DNA concentrations from environmental samples using absolute standard curves generated by real-time qPCR. The approach accounted for uncertainty from multiple sources such as experiment-to-experiment variation, variability between replicate measurements, as well as uncertainty introduced when employing calibration curves generated from absolute plasmid DNA standards.</p

    Ready-to-Use Therapeutic Food for Catch-Up Growth in Children after an Episode of Plasmodium falciparum Malaria: An Open Randomised Controlled Trial

    Get PDF
    Background: Catch-up growth after an infection is essential for children to maintain good nutritional status. To prevent malnutrition, WHO recommends that children are given one additional healthy meal per day during the 2 weeks after onset of illness. We investigated to what extent ready-to-use therapeutic food (RUTF) promotes catch-up growth in children after an acute, uncomplicated episode of Plasmodium falciparum malaria. Methods: We did an open randomised trial of children aged 6–59 months with confirmed malaria who attended a Médecins Sans Frontières-supported outpatient clinic in Katanga Province, Democratic Republic of Congo. All children received a clinical examination and malaria treatment. Patients were then randomly assigned to either an RUTF group, who received daily supplemental RUTF (a high-protein peanut-based paste) for 14 days, or to a control group, who received no supplemental food. Children were weighed at baseline and on days 14 and 28. The primary outcome was mean weight change after 14 days ’ RUTF. Analysis was by intention-to-treat. Results: 93 children received RUTF and 87 received no food supplementation. At day 14, the RUTF group had a mean weight gain of 353 g compared with 189 g in the control group (difference 164 [95%CI 52–277], p = 0.005). However, at day 28 there was no statistically significant difference between the groups (539 g versus 414 g, respectively [p = 0.053]). Similarly, rate of weight gain per kg bodyweight per day was significantly higher at day 14 in the RUTF group (2.4 g/kg pe

    Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers

    Full text link
    [EN] Cardiac resynchronization therapy (CRT) is an effective treatment for those patients with severe heart failure. Regrettably, there are about one third of CRT "non-responders", i.e. patients who have undergone this form of device therapy but do not respond to it, which adversely affects the utility and cost-effectiveness of CRT. In this paper, we assess the ability of a novel surface ECG marker to predict CRT response. We performed a retrospective exploratory study of the ECG previous to CRT implantation in 43 consecutive patients with ischemic (17) or non-ischemic (26) cardiomyopathy. We extracted the QRST complexes (consisting of the QRS complex, the S-T segment, and the T wave) and obtained a measure of their energy by means of spectral analysis. This ECG marker showed statistically significant lower values for non-responder patients and, joint with the duration of QRS complexes (the current gold-standard to predict CRT response), the following performances: 86% accuracy, 88% sensitivity, and 80% specificity. In this manner, the proposed ECG marker may help clinicians to predict positive response to CRT in a non-invasive way, in order to minimize unsuccessful procedures.This work was supported by MINECO under grants MTM2013-43540-P and MTM2016-76647-P.Ortigosa, N.; Pérez-Roselló, V.; Donoso, V.; Osca Asensi, J.; Martínez-Dolz, L.; Fernández Rosell, C.; Galbis Verdu, A. (2018). Early prediction of cardiac resynchronization therapy response by non-invasive electrocardiogram markers. Medical & Biological Engineering & Computing. 56(4):611-621. https://doi.org/10.1007/s11517-017-1711-1S611621564Boggiatto P, Fernández C, Galbis A (2009) A group representation related to the stockwell transform. Indiana University Mathematics Journal 58(5):2277–2296Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G et al (2013) 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Europace 15:1070–1118Brown RA, Lauzon ML, Frayne R (2010) A general description of linear time-frequency transforms and formulation of a fast, invertible transform that samples the continuous s-transform spectrum nonredundantly. IEEE Trans Signal Process 58(1): 281–290Carità P, Corrado E, Pontone G, Curnis A, Bontempi L et al (2016) Non-responders to cardiac resynchronization therapy: insights from multimodality imaging and electrocardiography. A brief review. Int J Cardiol 225:402–407Cazeau S, Leclercq C, Lavergne T, Walker S, Varma C, Linde C et al (2001) Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N Engl J Med 344:873–880Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):27:1–27:27Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) SMOTE: synthetic minority over-sampling technique. J Artif Intell Res 16(1):321–357Cleland JGF, Abraham WT, Linde C, Gold MR, Young J et al (2013) An individual patient meta-analysis of five randomized trials assessing the effects of cardiac resyn- chronization therapy on morbidity and mortality in patients with symptomatic heart failure. Eur Heart Journal 34(46):3547–3556Cleland JGF, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the Cardiac Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J 157:457–466Cleland JGF, Freemantle N, Erdmann E, Gras D, Kappenberger L et al (2012) Long-term mortality with cardiac resynchronization therapy in the Cardiac Resynchronization-Heart Failure (CARE-HF) trial. Eur J Heart Fail 14:628–634Egoavil CA, Ho RT, Greenspon AJ, Pavri BB (2005) Cardiac resynchronization therapy in patients with right bundle branch block: analysis of pooled data from the MIRACLE and Contak CD trials. Heart Rhythm 2(6):611–615Engels EB, Mafi-Rad M, van Stipdonk AM, Vernooy K, Prinzen FW (2016) Why QRS duration should be replaced by better measures of electrical activation to improve patient selection for cardiac resynchronization therapy. J Cardiovasc Transl Res 9(4):257–265Engels EB, Végh EM, Van Deursen CJ, Vernooy K, Singh JP, Prinzen FW (2015) T-wave area predicts response to cardiac resynchronization therapy in patients with left bundle branch block. J Cardiovasc Electrophysiol 26(2):176–183Eschalier R, Ploux S, Ritter P, Haïssaguerre M, Ellenbogen K, Bordachar P (2015) Nonspecific intraventricular conduction delay: definitions, prognosis, and implications for cardiac resynchronization therapy. Heart Rhythm 12(5):1071–1079Goldenberg I, Kutyifa V, Klein HU, Cannom DS, Brown MW et al (2014) Survival with cardiac-resynchronization therapy in mild heart failure. N Engl J Med 370:1694–1701He H, Bai Y, Garcia EA, Li S (2008) ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: International joint conference on neural networks, pp 1322–1328Jacobsson J, Borgguist R, Reitan C, Ghafoori E, Chatterjee NA et al (2016) Usefulness of the sum absolute QRST integral to predict outcomes in patients receiving cardiac resynchronization therapy. J Cardiovasc Electrophysiol 118(3):389–395McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 3623:228–238Meyer CR, Keiser HN (1977) Electrocardiogram baseline noise estimation and removal using cubic splines and state-space computation techniques. Comput Biomed Res 10:459–470Ortigosa N, Giménez VM (2014) Raw data extraction from electrocardiograms with portable document format. Comput Meth Programs Biomed 113(1):284–289Ortigosa N, Osca J, Jiménez R, Rodríguez Y, Fernández C, Galbis A (2016) Predictive analysis of cardiac resynchronization therapy response by means of the ECG. 2016 Comput Cardio 43:753–756. https://doi.org/10.22489/CinC.2016.218-415Ponikowski P, Voors AA, Anker S, Bueno H, Cleland JG, Coats AJ et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975Rad MM, Wijntjens GW, Engels EB, Blaauw Y, Luermans JG et al (2016) Vectorcardiographic QRS area identifies delayed left ventricular lateral wall activation determined by electroanatomic mapping in candidates for cardiac resynchronization therapy. Heart Rhythm 13(1):217–225Shanks M, Delgado V, Bax JJ (2016) Cardiac resynchronization therapy in non-ischemic cardiomyopathy. Journal of Atrial Fibrillation 8(5):47–52Singh JP, Fan D, Heist EK, Alabiad CR, Taub C et al (2006) Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm 3(11):1285–1292Sohaib SM, Finegold JA, Nijjer SS, Hossain R, Linde C et al (2015) Opportunity to increase life span in narrow QRS cardiac resynchronization therapy recipients by deactivating ventricular pacing: evidence from randomized controlled trials. JACC Heart Fail 3:327–336Stockwell RG, Mansinha L, Lowe RP (1996) Localization of the complex spectrum: the S transform. IEEE Trans Signal Process 44(4):998–1001Tang ASL, Wells GA, Talajic M, Arnold MO, Sheldon R et al (2010) Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363:2385–2395Tereshchenko LG, Cheng A, Park J, Wold N, Meyer TE, Gold MR et al (2015) Novel measure of electrical dyssynchrony predicts response in cardiac resynchronization therapy: results from the SMART-AV trial. Heart Rhythm 12(2):2402–2410van Deursen CJ, Vernooy K, Dudink E, Bergfeldt L, Crijns HJ et al (2015) Vectorcardiographic QRS area as a novel predictor of response to cardiac resynchronization therapy. J Electrocardiol 48(1):45–52Wang TJ (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108:977–982Woods B, Hawkins N, Mealing S, Sutton A, Abraham WT et al (2015) Individual patient data network meta-analysis of mortality effects of implantable cardiac devices. Heart 101:1800–1806Ypenburg C, van Bommel RJ, Borleffs CJ, Bleeker GB, Boersma E et al (2009) Long-term prognosis after cardiac resynchronization therapy is related to the extent of left ventricular reverse remodeling at midterm follow-up. J Am Coll Cardiol 53(6):483–490Yu CM, Hayes DL (2013) Cardiac resynchronization therapy: state of the art 2013. Eur Heart J 34:1396–140

    Discovery of potent, novel, non-toxic anti-malarial compounds via quantum modelling, virtual screening and in vitro experimental validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Developing resistance towards existing anti-malarial therapies emphasize the urgent need for new therapeutic options. Additionally, many malaria drugs in use today have high toxicity and low therapeutic indices. Gradient Biomodeling, LLC has developed a quantum-model search technology that uses quantum similarity and does not depend explicitly on chemical structure, as molecules are rigorously described in fundamental quantum attributes related to individual pharmacological properties. Therapeutic activity, as well as toxicity and other essential properties can be analysed and optimized simultaneously, independently of one another. Such methodology is suitable for a search of novel, non-toxic, active anti-malarial compounds.</p> <p>Methods</p> <p>A set of innovative algorithms is used for the fast calculation and interpretation of electron-density attributes of molecular structures at the quantum level for rapid discovery of prospective pharmaceuticals. Potency and efficacy, as well as additional physicochemical, metabolic, pharmacokinetic, safety, permeability and other properties were characterized by the procedure. Once quantum models are developed and experimentally validated, the methodology provides a straightforward implementation for lead discovery, compound optimizzation and <it>de novo </it>molecular design.</p> <p>Results</p> <p>Starting with a diverse training set of 26 well-known anti-malarial agents combined with 1730 moderately active and inactive molecules, novel compounds that have strong anti-malarial activity, low cytotoxicity and structural dissimilarity from the training set were discovered and experimentally validated. Twelve compounds were identified <it>in silico </it>and tested <it>in vitro</it>; eight of them showed anti-malarial activity (IC50 ≤ 10 μM), with six being very effective (IC50 ≤ 1 μM), and four exhibiting low nanomolar potency. The most active compounds were also tested for mammalian cytotoxicity and found to be non-toxic, with a therapeutic index of more than 6,900 for the most active compound.</p> <p>Conclusions</p> <p>Gradient's metric modelling approach and electron-density molecular representations can be powerful tools in the discovery and design of novel anti-malarial compounds. Since the quantum models are agnostic of the particular biological target, the technology can account for different mechanisms of action and be used for <it>de novo </it>design of small molecules with activity against not only the asexual phase of the malaria parasite, but also against the liver stage of the parasite development, which may lead to true causal prophylaxis.</p

    Operational research to inform a sub-national surveillance intervention for malaria elimination in Solomon Islands

    Get PDF
    Background: Successful reduction of malaria transmission to very low levels has made Isabel Province, Solomon Islands, a target for early elimination by 2014. High malaria transmission in neighbouring provinces and the potential for local asymptomatic infections to cause malaria resurgence highlights the need for sub-national tailoring of surveillance interventions. This study contributes to a situational analysis of malaria in Isabel Province to inform an appropriate surveillance intervention. Methods. A mixed method study was carried out in Isabel Province in late 2009 and early 2010. The quantitative component was a population-based prevalence survey of 8,554 people from 129 villages, which were selected using a spatially stratified sampling approach to achieve uniform geographical coverage of populated areas. Diagnosis was initially based on Giemsa-stained blood slides followed by molecular analysis using polymerase chain reaction (PCR). Local perceptions and practices related to management of fever and treatment-seeking that would impact a surveillance intervention were also explored using qualitative research methods. Results: Approximately 33% (8,554/26,221) of the population of Isabel Province participated in the survey. Only one subject was found to be infected with Plasmodium falciparum (Pf) (96 parasites/L) using Giemsa-stained blood films, giving a prevalence of 0.01%. PCR analysis detected a further 13 cases, giving an estimated malaria prevalence of 0.51%. There was a wide geographical distribution of infected subjects. None reported having travelled outside Isabel Province in the previous three months suggesting low-level indigenous malaria transmission. The qualitative findings provide warning signs that the current community vigilance approach to surveillance will not be sufficient to achieve elimination. In addition, fever severity is being used by individuals as an indicator for malaria and a trigger for timely treatment-seeking and case reporting. In light of the finding of a low prevalence of parasitaemia, the current surveillance system may not be able to detect and prevent malaria resurgence. Conclusion: An adaption to the malERA surveillance framework is proposed and recommendations made for a tailored provincial-level surveillance intervention, which will be essential to achieve elimination, and to maintain this status while the rest of the country catches up

    Fleas infesting pets in the era of emerging extra-intestinal nematodes

    Get PDF

    About the QSOs Contained in the Cerro El Roble Survey and the Density of UVX-QSOs in the SGP Field

    No full text
    corecore