573 research outputs found

    The Actinomyosin Motor Drives Malaria Parasite Red Blood Cell Invasion but Not Egress.

    Get PDF
    Apicomplexa are obligate intracellular parasites that actively invade, replicate within, and egress from host cells. The parasite actinomyosin-based molecular motor complex (often referred to as the glideosome) is considered an important mediator of parasite motility and virulence. Mature intracellular parasites often become motile just prior to egress from their host cells, and in some genera, this motility is important for successful egress as well as for subsequent invasion of new host cells. To determine whether actinomyosin-based motility is important in the red blood cell egress and invasion activities of the malaria parasite, we have used a conditional genetic approach to delete GAP45, a primary component of the glideosome, in asexual blood stages of Plasmodium falciparum Our results confirm the essential nature of GAP45 for invasion but show that P. falciparum does not require a functional motor complex to undergo egress from the red blood cell. Malarial egress therefore differs fundamentally from induced egress in the related apicomplexan Toxoplasma gondiiIMPORTANCE Clinical malaria results from cycles of replication of single-celled parasites of the genus Plasmodium in red blood cells. Intracellular parasite replication is followed by a highly regulated, protease-dependent process called egress, in which rupture of the bounding membranes allows explosive release of daughter merozoites which rapidly invade fresh red cells. A parasite actinomyosin-based molecular motor (the glideosome) has been proposed to provide the mechanical force to drive invasion. Studies of the related parasite Toxoplasma gondii have shown that induced egress requires parasite motility, mediated by a functional glideosome. However, whether the glideosome has a similar essential role in egress of malaria merozoites from red blood cells is unknown. Here, we show that although a functional glideosome is required for red blood cell invasion by Plasmodium falciparum merozoites, it is not required for egress. These findings place further emphasis on the key role of the protease cascade in malarial egress

    Brain metastases as primary manifestation of a melanocytic malignant peripheral nerve sheath tumor in a 60-year-old man

    Get PDF
    BACKGROUND: Malignant peripheral nerve sheath tumors are rare tumor entities that originate from peripheral nerve sheaths and have an unfavorable prognosis. Metastatic spread to the cerebral parenchyma is absolutely rare. This case report describes the clinical course in a 60-year-old man whose tumor came to medical attention because of a seizure. CASE PRESENTATION: Magnetic resonance imaging demonstrated two intracerebral lesions. The symptomatic lesion was removed microneurosurgically and histology demonstrated a metastasis from a malignant peripheral nerve sheath tumor. Postoperatively, whole-brain irradiation was performed. The primary tumor was identified in the area of the sciatic nerve on the right. Follow-up 14 months after resection showed that there was no progression of the intracerebral lesions but an increase in size and number of distant metastases. CONCLUSION: There are no generally accepted guidelines for the treatment of malignant peripheral nerve sheath tumors with cerebral metastases. This case report presents and discusses one possible therapeutic approach. Due to the poor overall prognosis, the least invasive therapy should be chosen

    Alpha-1 antitrypsin gene polymorphism in Chronic Obstructive Pulmonary Disease (COPD)

    Get PDF
    Alpha-1-antitrypsin (AAT) plays an important role in the pathogenesis of emphysema, the pathological lesion underlying the majority of the manifestations of Chronic Obstructive Pulmonary Disease (COPD). In this study we tested the hypothesis that common AAT polymorphisms influence the risk of developing COPDs. We investigated PiM1 (Ala213Val), PiM2 (Arg101His), PiM3 (Glu376Asp), PiS (Glu264Val) and PiZ (Glu342Lys) SERPINA1 alleles in 100 COPD patients and 200 healthy controls. No significant differences were observed in allele frequencies between COPD patients and controls, neither did haplotype analysis show significant differences between the two groups. A cross-sectional study revealed no significant relationship between common SERPINA1 polymorphisms (PiM1, PiM2, PiM3) and the emphysematous type of COPD. In addition, FEV1 annual decline, determined during a two-year follow up period, revealed no difference among carriers of the tested polymorphisms

    Identification of Domains and Amino Acids Essential to the Collagen Galactosyltransferase Activity of GLT25D1

    Get PDF
    Collagen is modified by hydroxylation and glycosylation of hydroxylysine residues. This glycosylation is initiated by the β1,O galactosyltransferases GLT25D1 and GLT25D2. The structurally similar protein cerebral endothelial cell adhesion molecule CEECAM1 was previously reported to be inactive when assayed for collagen glycosyltransferase activity. To address the cause of the absent galactosyltransferase activity, we have generated several chimeric constructs between the active human GLT25D1 and inactive human CEECAM1 proteins. The assay of these chimeric constructs pointed to a short central region and a large C-terminal region of CEECAM1 leading to the loss of collagen galactosyltransferase activity. Examination of the three DXD motifs of the active GLT25D1 by site-directed mutagenesis confirmed the importance of the first (amino acids 166–168) and second motif (amino acids 461–463) for enzymatic activity, whereas the third one was dispensable. Since the second DXD motif is incomplete in CEECAM1, we have restored the motif by introducing the substitution S461D. This change did not restore the activity of the C-terminal region, thereby showing that additional amino acids were required in this C-terminal region to confer enzymatic activity. Finally, we have introduced the substitution Q471R-V472M-N473Q-P474V in the CEECAM1-C-terminal construct, which is found in most animal GLT25D1 and GLT25D2 isoforms but not in CEECAM1. This substitution was shown to partially restore collagen galactosyltransferase activity, underlining its importance for catalytic activity in the C-terminal domain. Because multiple mutations in different regions of CEECAM1 contribute to the lack of galactosyltransferase activity, we deduced that CEECAM1 is functionally different from the related GLT25D1 protein

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Quantitative imaging of concentrated suspensions under flow

    Full text link
    We review recent advances in imaging the flow of concentrated suspensions, focussing on the use of confocal microscopy to obtain time-resolved information on the single-particle level in these systems. After motivating the need for quantitative (confocal) imaging in suspension rheology, we briefly describe the particles, sample environments, microscopy tools and analysis algorithms needed to perform this kind of experiments. The second part of the review focusses on microscopic aspects of the flow of concentrated model hard-sphere-like suspensions, and the relation to non-linear rheological phenomena such as yielding, shear localization, wall slip and shear-induced ordering. Both Brownian and non-Brownian systems will be described. We show how quantitative imaging can improve our understanding of the connection between microscopic dynamics and bulk flow.Comment: Review on imaging hard-sphere suspensions, incl summary of methodology. Submitted for special volume 'High Solid Dispersions' ed. M. Cloitre, Vol. xx of 'Advances and Polymer Science' (Springer, Berlin, 2009); 22 pages, 16 fig

    Switch of noninvasive ventilation (NIV) to continuous positive airway pressure (CPAP) in patients with obesity hypoventilation syndrome: a pilot study

    Get PDF
    International audienceObesity is a major worldwide public health issue. The main respiratory complication stemming from obesity is obesity hypoventilation syndrome (OHS). Most of the OHS patients diagnosed during an exacerbation are treated with non invasive ventilation (NIV). Up to date, no prospective study has demonstrated in real life conditions the feasibility of a systematic protocoled switch of NIV to continuous positive airway pressure (CPAP), once stability is achieved
    • …
    corecore