14,382 research outputs found

    Zero-Annotation Object Detection with Web Knowledge Transfer

    Full text link
    Object detection is one of the major problems in computer vision, and has been extensively studied. Most of the existing detection works rely on labor-intensive supervision, such as ground truth bounding boxes of objects or at least image-level annotations. On the contrary, we propose an object detection method that does not require any form of human annotation on target tasks, by exploiting freely available web images. In order to facilitate effective knowledge transfer from web images, we introduce a multi-instance multi-label domain adaption learning framework with two key innovations. First of all, we propose an instance-level adversarial domain adaptation network with attention on foreground objects to transfer the object appearances from web domain to target domain. Second, to preserve the class-specific semantic structure of transferred object features, we propose a simultaneous transfer mechanism to transfer the supervision across domains through pseudo strong label generation. With our end-to-end framework that simultaneously learns a weakly supervised detector and transfers knowledge across domains, we achieved significant improvements over baseline methods on the benchmark datasets.Comment: Accepted in ECCV 201

    Lovelock gravity from entropic force

    Full text link
    In this paper, we first generalize the formulation of entropic gravity to (n+1)-dimensional spacetime. Then, we propose an entropic origin for Gauss-Bonnet gravity and more general Lovelock gravity in arbitrary dimensions. As a result, we are able to derive Newton's law of gravitation as well as the corresponding Friedmann equations in these gravity theories. This procedure naturally leads to a derivation of the higher dimensional gravitational coupling constant of Friedmann/Einstein equation which is in complete agreement with the results obtained by comparing the weak field limit of Einstein equation with Poisson equation in higher dimensions. Our study shows that the approach presented here is powerful enough to derive the gravitational field equations in any gravity theory. PACS: 04.20.Cv, 04.50.-h, 04.70.Dy.Comment: 10 pages, new versio

    Computational Complexity of interacting electrons and fundamental limitations of Density Functional Theory

    Get PDF
    One of the central problems in quantum mechanics is to determine the ground state properties of a system of electrons interacting via the Coulomb potential. Since its introduction by Hohenberg, Kohn, and Sham, Density Functional Theory (DFT) has become the most widely used and successful method for simulating systems of interacting electrons, making their original work one of the most cited in physics. In this letter, we show that the field of computational complexity imposes fundamental limitations on DFT, as an efficient description of the associated universal functional would allow to solve any problem in the class QMA (the quantum version of NP) and thus particularly any problem in NP in polynomial time. This follows from the fact that finding the ground state energy of the Hubbard model in an external magnetic field is a hard problem even for a quantum computer, while given the universal functional it can be computed efficiently using DFT. This provides a clear illustration how the field of quantum computing is useful even if quantum computers would never be built.Comment: 8 pages, 3 figures. v2: Version accepted at Nature Physics; differs significantly from v1 (including new title). Includes an extra appendix (not contained in the journal version) on the NP-completeness of Hartree-Fock, which is taken from v

    Modeling Effective Dosages in Hormetic Dose-Response Studies

    Get PDF
    BACKGROUND: Two hormetic modifications of a monotonically decreasing log-logistic dose-response function are most often used to model stimulatory effects of low dosages of a toxicant in plant biology. As just one of these empirical models is yet properly parameterized to allow inference about quantities of interest, this study contributes the parameterized functions for the second hormetic model and compares the estimates of effective dosages between both models based on 23 hormetic data sets. Based on this, the impact on effective dosage estimations was evaluated, especially in case of a substantially inferior fit by one of the two models. METHODOLOGY/PRINCIPAL FINDINGS: The data sets evaluated described the hormetic responses of four different test plant species exposed to 15 different chemical stressors in two different experimental dose-response test designs. Out of the 23 data sets, one could not be described by any of the two models, 14 could be better described by one of the two models, and eight could be equally described by both models. In cases of misspecification by any of the two models, the differences between effective dosages estimates (0-1768%) greatly exceeded the differences observed when both models provided a satisfactory fit (0-26%). This suggests that the conclusions drawn depending on the model used may diverge considerably when using an improper hormetic model especially regarding effective dosages quantifying hormesis. CONCLUSIONS/SIGNIFICANCE: The study showed that hormetic dose responses can take on many shapes and that this diversity can not be captured by a single model without risking considerable misinterpretation. However, the two empirical models considered in this paper together provide a powerful means to model, prove, and now also to quantify a wide range of hormetic responses by reparameterization. Despite this, they should not be applied uncritically, but after statistical and graphical assessment of their adequacy

    DNA methylation at the Igf2/H19 imprinting control region is associated with cerebellum mass in outbred mice

    Get PDF
    Background: Insulin-like growth factor 2 (Igf2) is a paternally expressed imprinted gene regulating fetal growth, playing an integral role in the development of many tissues including the brain. The parent-of-origin specific expression of Igf2 is largely controlled by allele-specific DNA methylation at CTCF-binding sites in the imprinting control region (ICR), located immediately upstream of the neighboring H19 gene. Previously we reported evidence of a negative correlation between DNA methylation in this region and cerebellum weight in humans. Results: We quantified cerebellar DNA methylation across all four CTCF binding sites spanning the murine Igf2/H19 ICR in an outbred population of Heterogeneous Stock (HS) mice (n = 48). We observe that DNA methylation at the second and third CTCF binding sites in the Igf2/H19 ICR shows a negative relationship with cerebellar mass, reflecting the association observed in human post-mortem cerebellum tissue. Conclusions: Given the important role of the cerebellum in motor control and cognition, and the link between structural cerebellar abnormalities and neuropsychiatric phenotypes, the identification of epigenetic factors associated with cerebellum growth and development may provide important insights about the etiology of psychiatric disorders

    A Mechanistic Model of PCR for Accurate Quantification of Quantitative PCR Data

    Get PDF
    Background: Quantitative PCR (qPCR) is a workhorse laboratory technique for measuring the concentration of a target DNA sequence with high accuracy over a wide dynamic range. The gold standard method for estimating DNA concentrations via qPCR is quantification cycle (Cq) standard curve quantification, which requires the time- and labor-intensive construction of a Cq standard curve. In theory, the shape of a qPCR data curve can be used to directly quantify DNA concentration by fitting a model to data; however, current empirical model-based quantification methods are not as reliable as Cq standard curve quantification. Principal Findings: We have developed a two-parameter mass action kinetic model of PCR (MAK2) that can be fitted to qPCR data in order to quantify target concentration from a single qPCR assay. To compare the accuracy of MAK2-fitting to other qPCR quantification methods, we have applied quantification methods to qPCR dilution series data generated in three independent laboratories using different target sequences. Quantification accuracy was assessed by analyzing the reliability of concentration predictions for targets at known concentrations. Our results indicate that quantification by MAK2-fitting is as reliable as Cq standard curve quantification for a variety of DNA targets and a wide range of concentrations. Significance: We anticipate that MAK2 quantification will have a profound effect on the way qPCR experiments are designed and analyzed. In particular, MAK2 enables accurate quantification of portable qPCR assays with limited sampl

    Making Use of Empty Intersections to Improve the Performance of CbO-Type Algorithms

    Get PDF
    This paper describes how improvements in the performance of Close-by-One type algorithms can be achieved by making use of empty intersections in the computation of formal concepts. During the computation, if the intersection between the current concept extent and the next attribute-extent is empty, this fact can be simply inherited by subsequent children of the current concept. Thus subsequent intersections with the same attribute-extent can be skipped. Because these intersections require the testing of each object in the current extent, significant time savings can be made by avoiding them. The paper also shows how further time savings can be made by forgoing the traditional canonicity test for new extents, if the intersection is empty. Finally, the paper describes how, because of typical optimizations made in the implementation of CbO-type algorithms, even more time can be saved by amalgamating inherited attributes with inherited empty intersections into a single, simple test

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in Gβˆ–FG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an Oβˆ—(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic

    Development and mining of a database of historic European paper properties

    Get PDF
    A database of historic paper properties was developed using 729 samples of European origin (1350–1990), analysed for acidity, degree or polymerisation (DP), molecular weight of cellulose, grammage, tensile strength, as well as contents of ash, aluminium, carbonyl groups, rosin, protein, lignin and fibre furnish. Using Spearman’s rank correlation coefficient and principal component analysis, the data were examined with respect to methods of manufacture, as well as chemical stability of paper. Novel patterns emerged related to loss of DP and accumulation of carbonyl groups and acidity with time and the role of lignin and rosin, as well as rate of degradation (k = 10βˆ’5 yearβˆ’1) at room conditions. In-depth understanding of long-term degradation of lignin and rosin is needed to better understand the relationships between composition and degradation of historic paper. This study highlights the importance of mining significant volumes of analytical data, and its variability, obtained from real historic objects

    Compensation ratio-dependent concentration of a V InH 4 complex in n-type liquid encapsulated Czochralski InP

    Get PDF
    The concentration of hydrogen-indium vacancy complex V InH 4 in liquid encapsulated Czochralski undoped and Fe-doped n-type InP has been studied by low-temperature infrared absorption spectroscopy. The V InH 4 complex is found to be a dominant intrinsic shallow donor defect with concentrations up to ∼10 16 cm -3 in as-grown liquid encapsulated Czochralski InP. The concentration of the V InH 4 complex is found to increase with the compensation ratio in good agreement with the proposed defect formation model of Walukiewicz [W. Walukiewicz, Phys. Rev. B 37, 4760 (1998); Appl. Phys. Lett. 54, 2094 (1989)], which predicts a Fermi-level-dependent concentration of amphoteric defects. © 1998 American Institute of Physics.published_or_final_versio
    • …
    corecore